(本小題12分)

已知動點P到定點A(0,1)的距離比它到定直線y = -2的距離小1.

(I)求動點P的軌跡C的方程;

(II)已知點Q為直線y= -1上的動點,過點q作曲線C的兩條切線,切點分別為M,N,求的取值范圍.(其中O為坐標(biāo)原點)

 

【答案】

解:(Ⅰ)由動點到定點的距離比到定直線的距離小,可知到定點的距離等于到直線的距離,由拋物線定義可知動點的軌跡方程為.………………………………4分

(Ⅱ)法一由題意知,設(shè),,

則切線,

切線,……………………6分

,交于,故,又上,

.

可得直線:,又,可得.

由韋達(dá)定理可知,, 不妨設(shè)……………………8分

=,……………………………10分

所以.…………………………12分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建師大附中高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題12分)已知函數(shù)為常數(shù))是實數(shù)集上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù).

(I)求的值;

(II)若所在的取值范圍上恒成立,求的取值范圍;

(Ⅲ)討論關(guān)于的方程的根的個數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年吉林省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

(本小題12分)已知二次函數(shù)滿足

(1)求的解析式;

 (2) 當(dāng)時,不等式:恒成立,求實數(shù)的范圍.

(3)設(shè),求的最大值;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年福建省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題12分)

已知雙曲線的中心在原點,左右焦點分別為,離心率為,且過點,

(1)求此雙曲線的標(biāo)準(zhǔn)方程;

(2)若直線系(其中為參數(shù))所過的定點恰在雙曲線上,求證:。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年福建省四地六校高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

 

(本小題12分)

已知橢圓C的左右焦點坐標(biāo)分別是(-1,0),(1, 0),離心率,直線與橢圓C交于不同的兩點M,N,以線段MN為直徑作圓P。

(1)求橢圓C的方程;

(2)若圓P恰過坐標(biāo)原點,求圓P的方程;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年河南省許昌市高二下學(xué)期聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本小題12分)

已知曲線直線,且直線與曲線相切于點,求直線的方程和切點的坐標(biāo)。

 

查看答案和解析>>

同步練習(xí)冊答案