18.拋擲一枚質(zhì)地均勻的骰子,向上的一面出現(xiàn)任意一種點數(shù)的概率都是$\frac{1}{6}$,記事件A為“向上的點數(shù)是奇數(shù)”,事件B為“向上的點數(shù)不超過3”,則概率P(A∪B)=( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 P(A∪B)=P(A)+P(B)-P(AB),由此能求出結(jié)果.

解答 解:∵拋擲一枚質(zhì)地均勻的骰子,向上的一面出現(xiàn)任意一種點數(shù)的概率都是$\frac{1}{6}$,
記事件A為“向上的點數(shù)是奇數(shù)”,事件B為“向上的點數(shù)不超過3”,
∴P(A)=$\frac{3}{6}=\frac{1}{2}$,P(B)=$\frac{3}{6}=\frac{1}{2}$,P(AB)=$\frac{2}{6}=\frac{1}{3}$,
P(A∪B)=P(A)+P(B)-P(AB)=$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$=$\frac{2}{3}$.
故選:C.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,則輸出s的值為( 。
A.21B.55C.91D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x2-(a+2)x+alnx,常數(shù)a>0
(1)當(dāng)x=1時,函數(shù)f(x)取得極小值-2,求函數(shù)f(x)的極大值
(2)設(shè)定義在D上的函數(shù)y=h(x)在點P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時,若$\frac{h(x)-g(x)}{{x-{x_0}}}>0$在D內(nèi)恒成立,則稱點P為h(x)的“類優(yōu)點”,若點(1,f(1))是函數(shù)f(x)的“類優(yōu)點”,
①求函數(shù)f(x)在點(1,f(1))處的切線方程
②求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知矩形ABCD中,AB=2,AD=1,M為CD的中點.如圖將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(Ⅰ)求證:BM⊥平面ADM;
(Ⅱ)若點E是線段DB上的中點,求三棱錐E-ABM的體積V1與四棱錐D-ABCM的體積V2之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)是y=3x的反函數(shù),則函數(shù)f(1)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$的離心率是( 。
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{25}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知動直線y=k(x+1)與橢圓C:x2+3y2=5相交于A、B兩點,已知點$M(-\frac{7}{3},0)$,則$\overrightarrow{MA}•\overrightarrow{MB}$的值是( 。
A.$-\frac{9}{4}$B.$\frac{9}{4}$C.$-\frac{4}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{7}=1$(a>0)的右焦點為圓(x-4)2+y2=1的圓心,則此雙曲線的離心率為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知m,n是兩條不同的直線,α,β是兩個不同的平面(  )
A.若m∥α,m∥β,則α∥βB.若m⊥α,m∥β,則α∥βC.若m⊥α,n∥α,則m∥nD.若m⊥α,n⊥α,則m∥n

查看答案和解析>>

同步練習(xí)冊答案