復(fù)數(shù)||z+i|-|z-i||=2對(duì)應(yīng)復(fù)平面內(nèi)的曲線是( 。
A、雙曲線B、雙曲線的一支
C、線段D、兩條射線
考點(diǎn):復(fù)數(shù)求模,軌跡方程
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的幾何意義,即可得到結(jié)論.
解答: 解:∵||z+i|-|z-i||=2,
∴表示z與點(diǎn)A(0,1),B(0,-1)的距離之差的絕對(duì)值是個(gè)常數(shù)2=|AB|,
則對(duì)應(yīng)的曲線為兩條射線,
故選:D.
點(diǎn)評(píng):本題主要考查復(fù)數(shù)的幾何意義,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA是⊙O的切線,A為切點(diǎn),PC是⊙O的割線,且PB=
1
2
BC,則
PA
PB
等于( 。
A、2
B、
1
2
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在小時(shí)候,我們就用手指練習(xí)過(guò)數(shù)數(shù).一個(gè)小朋友按如圖所示的規(guī)則練習(xí)數(shù)數(shù),數(shù)到2014時(shí)對(duì)應(yīng)的指頭是(  )
A、大拇指B、食指
C、中指D、無(wú)名指

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)有n個(gè)圓,其中每?jī)蓚(gè)圓都相交于兩點(diǎn),且每三個(gè)圓都不共點(diǎn),用f(n)表示這n個(gè)圓把平面分割的區(qū)域數(shù),那么f(n+1)與f(n)之間的關(guān)系為( 。
A、f(n+1)=f(n)+n
B、f(n+1)=f(n)+2n
C、f(n+1)=f(n)+n+1
D、f(n+1)=f(n)+n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若在三角形ABC中,已知a2=b2+c2+bc,則角A為( 。
A、60°B、120°
C、30°D、60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C是直線l上不同的三個(gè)點(diǎn),點(diǎn)O不在直線l上,則使等式x2
OA
+x
OB
+
BC
=
0
成立的實(shí)數(shù)x的取值集合為( 。
A、{-1}B、∅
C、{0}D、{0,-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓O:
x2
a2
+
y2
b2
=1的離心率為e1,動(dòng)△ABC是其內(nèi)接三角形,且
OC
=
3
5
OA
+
4
5
OB
.若AB的中點(diǎn)為D,D的軌跡E的離心率為e2,則( 。
A、e1=e2
B、e1<e2
C、e1>e2
D、e1e2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直坐標(biāo)系中,點(diǎn)P在x軸上,它到P1(0,
2
,3)的距離為2
3
,則點(diǎn)P的坐標(biāo)為( 。
A、(0,1,0)或(0,-1,0)
B、(1,0,0)
C、(1,0,0)或(-1,0,0)
D、(0,1,0)或(0,0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和記為Sn,a1=1,點(diǎn)(Sn,an+1)在直線y=2x+1上,n∈N*.
(1)求證:數(shù)列{an}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式an
(2)設(shè)bn=log3an+1,Tn是數(shù)列{
1
bnbn+1
}的前n項(xiàng)和,求T2014的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案