函數(shù)y=2x+log2x,x∈[1,2]的最小值為
 
考點(diǎn):函數(shù)的值域
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由基本初等函數(shù)可判斷函數(shù)為增函數(shù),由單調(diào)性直接求最小值即可.
解答: 解:易知函數(shù)y=2x+log2x在[1,2]上是增函數(shù),
則函數(shù)y=2x+log2x,x∈[1,2]的最小值為
2+1=3.
故答案為:3.
點(diǎn)評:本題考查了函數(shù)的最值的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用1,2,…,9這九個數(shù)字組成沒有重復(fù)數(shù)字的三位數(shù),共有( 。
A、27個B、84個
C、504個D、729個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f(x)是f′(x)的導(dǎo)函數(shù),若方程f(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)研究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點(diǎn)”;任何一個三次函數(shù)都有對稱中心,且拐點(diǎn)就是對稱中心. 若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請你根據(jù)這一發(fā)現(xiàn),求:
(1)函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的對稱中心為
 

(2)f(
1
2016
)+f(
2
2016
)+…+f(
2015
2016
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn,且2Sn=(n+1)an,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列3,33,333,3333,…的一個通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2≤x-a≤0},B⊆∁UA,根據(jù)下列條件求a的取值范圍:
(1)B={x||x+1|>2};
(2)B={x||x+1|≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1-x2
1-y2
”是“|x|<|y|”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用極限存在準(zhǔn)則證明
lim
n→∞
[
1
n2+1
+
1
n2+2
+…+
1
n2+n
]=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3x2+2y2≤6,求2x+y的最大值.

查看答案和解析>>

同步練習(xí)冊答案