( 12分)如圖,橢圓的方程為,其右焦點(diǎn)為F,把橢圓的長(zhǎng)軸分成6等分,過每個(gè)等分點(diǎn)作x軸的垂線交橢圓上半部于點(diǎn)P1,P2,P3,P4,P5五個(gè)點(diǎn),且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5.

(1)求橢圓的方程;
(2)設(shè)直線lF點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.

解:(1)由題意,知
設(shè)橢圓的左焦點(diǎn)為F1,則|P1F|+|P5F|=|P1F|+|P1F1|=2a,
同時(shí)|P2F|+|P3F|=2a而|P3F|=a
∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5a=5  

(2)由題意, F(1,0),設(shè)l的方程為
整理,得因?yàn)?i>l過橢圓的右焦點(diǎn),

設(shè),



由于  
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題12分)已知橢圓的中心在坐標(biāo)原點(diǎn),右焦點(diǎn)F的坐標(biāo)為(3,0),直線l交橢圓于A、B兩點(diǎn),線段AB的中點(diǎn)為M(1,),
(1)求橢圓的方程;
(2)動(dòng)點(diǎn)N滿足 ,求動(dòng)點(diǎn)N的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓的兩個(gè)焦點(diǎn), 若存在點(diǎn)P為橢圓上一點(diǎn), 使得 , 則橢圓離心率的取值范圍是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的長(zhǎng)軸長(zhǎng)等于  ▲   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的焦點(diǎn)為、,在長(zhǎng)軸上任取一點(diǎn),過作垂直于的直線交橢圓于,則使得點(diǎn)的橫坐標(biāo)的取值范圍 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的最小值為(   )
A.   B.   C.   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,其中左焦點(diǎn)
①求橢圓的方程
②若直線與橢圓交于不同的兩點(diǎn),且線段的中點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在圓上,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P滿足,則橢圓的離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分,第(1)題4分、第(2)題8分、第(3)題6分)
已知二次曲線的方程:
(1)分別求出方程表示橢圓和雙曲線的條件;
(2)對(duì)于點(diǎn),是否存在曲線交直線、兩點(diǎn),使得?若存在,求出的值;若不存在,說明理由;
(3)已知與直線有公共點(diǎn),求其中實(shí)軸最長(zhǎng)的雙曲線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案