已知F(x)=3sinωx(ω>0)在[-
π
4
,
π
3
]上最小值為-3,則ω的最小值為
 
考點:正弦函數(shù)的定義域和值域
專題:三角函數(shù)的圖像與性質(zhì)
分析:先根據(jù)x的范圍求出ωx的取值范圍,進而根據(jù)函數(shù)f(x)在區(qū)間上的最小值求出ω的范圍,再由ω>0可求其最小值.
解答: 解:函數(shù)f(x)=3sinωx(ω>0)在區(qū)間[-
π
4
,
π
3
]上的最小值是-3,
則ωx的取值范圍是[-
ωπ
4
,
ωπ
3
]
,
-
ωπ
4
≤-
π
2
,即ω≥2,
∴ω的最小值等于2,
故答案為:2
點評:本題主要考查正弦函數(shù)的最值和三角函數(shù)的單調(diào)性.要求熟練掌握三角函數(shù)的圖象和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)fn(x)=xn+bx+c(n∈Z,b,c∈R).
(1)若n=-1,函數(shù)f(x)在區(qū)間[2,+∞)上是單調(diào)遞增函數(shù),求實數(shù)b的取值范圍;
(2)設(shè)n=2,若對任意x1,x2∈[-1,1],|f2(x1)-f2(x2)|≤4恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:(3x3+10x2+13x-27)÷(x2+2x-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
2x+1-1
,若函數(shù)y=g(x+1)的圖象與函數(shù)y=f(x)的圖象關(guān)于直線y=x對稱,則g-1(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC中,AB=2AD=4AE=4,則
BE
CD
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:|x|>a,命題q:x-
1
2x
-1>0,若p是q的必要不充分條件,則實數(shù)a取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(α+β)=
4
5
,cos(α-β)=-
4
5
π
2
<β<α<
4
,則cos2β=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=
sinx(sinx≤cosx)
cosx(sinx>cosx)
,下列說法正確的是( 。
A、f(x)的值域是[-1,1]
B、當且僅當x=(2k+1)π(k∈Z)時,f(x)取得最小值-1
C、f(x)的最小正周期是π
D、當且僅當2kπ<x<2kπ+
π
2
(k∈Z)
時,f(x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:1<|x2-4x|<3.

查看答案和解析>>

同步練習(xí)冊答案