【題目】(2015·湖南)設△ABC的內角A,B,C的對邊分別為a,b,c,a=btanA,
(1)證明:sinB=cosA
(2)若sinC-sinAcosB=,且B為鈍角,求A,B,C
【答案】
(1)
略。
(2)
A=30°, B=120°,C=30°。
【解析】
由a=btanA正弦定理,=,所以sinB=cosA.
=sin(A+B)-sinAcosB=sinAcosB+cosAsinB-sinAcosB=cosAsinB=, 有(I)知sinB=cosA, 因此sin2B=,又B為鈍角,所以sinB=,故B=120°,由cosA=sinB=知A=30°,從而C=180°-(A+B)=30°, 綜上所述,A=30°, B=120°,C=30°。
(II)因為sinC-sinAcosB=sin[180°-(A+B)-sinAcosB.
【考點精析】根據題目的已知條件,利用正弦定理的定義的相關知識可以得到問題的答案,需要掌握正弦定理:.
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解用戶對其產品的滿意度,從A,B兩地區(qū)分別隨機調查了20個用戶,得到用戶對產品的滿意度平分如下:
A地區(qū):62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地區(qū):73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(1)(I)根據兩組數(shù)據完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,得出結論即可)
(2)(II)根據用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:
|
|
|
|
|
|
|
|
記時間C:“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級”,假設兩地區(qū)用戶的評價結果相互獨立。根據所給數(shù)據,以事件發(fā)生的頻率作為相應事件發(fā)生的概率,求C的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·四川)一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示,在正方體中,設BC的中點為M,GH的中點為N.
(1)請將字母F,G,H標記在正方體相應的頂點處(不需說明理由)
(2)證明:直線MN∥平面BDH。
(3)求二面角A-EG-M的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2015·陜西)隨機抽取一個年份,對西安市該年4月份的天氣情況進行統(tǒng)計,結果如下:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 晴 | 雨 | 陰 | 陰 | 陰 | 雨 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 晴 | 陰 | 雨 | 陰 | 陰 | 晴 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 雨 |
(1)在4月份任取一天,估計西安市在該天不下雨的概率;
(2)西安市某學校擬從4月份的一個晴天開始舉行連續(xù)兩天的運動會,估計運動會期間不下雨的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若a,b 是函數(shù) 的兩個不同的零點,且a,b,-2 這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則p+q 的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學調查了某班全部45名同學參加書法社團和演講社團的情況,數(shù)據如下表:(單位:人)
被選中且未被選中的概率.
參加書法社團 | 未參加書法社團 | |
參加演講社團 | 8 | 5 |
未參加演講社團 | 2 | 30 |
(1)從該班隨機選1名同學,求該同學至少參加一個社團的概率;
(2)在既參加書法社團又參加演講社團的8名同學中,有5名男同學A1 , A2 , A3 , A4 , A5 , 3名女同學B1 , B2 , B3 . 現(xiàn)從這5名男同學和3名女同學中各隨機選1人,求A1被選中且B1未被選中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元。設f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(Ⅰ)求k的值及f(x)的表達式。
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m,n是兩條不同直線,,是兩個不同平面,則下列命題正確的是
A.若,垂直于同一平面,則與平行
B.若m,n平行于同一平面,則m與n平行
C.若,不平行,則在內不存在與平行的直線
D.若m,n不平行,則m與n不可能垂直于同一平面
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com