【題目】如圖,在四棱錐中,底面是菱形,,平面,,點(diǎn),分別為和中點(diǎn).
(1)求直線與所成角的正弦值;
(2)求與平面所成角的正弦值.
【答案】(1);(2)
【解析】
(1)取的中點(diǎn),連接,證明四邊形是平行四邊形,得出,再在中計(jì)算,即可求解;
(2)設(shè)為菱形的中心,取的中點(diǎn),證明平面,在直角中,計(jì)算,即可求解.
(1)取的中點(diǎn),連接,
因?yàn)?/span>分別為的中點(diǎn),所以,
又,
所以四邊形為平行四邊形,所以,
即為直線與所成的角或補(bǔ)角,
因?yàn)?/span> ,所以,
所以,
所以,所以,
所以.
(2)連接交于,取的中點(diǎn),連接,
因?yàn)辄c(diǎn)分別為和的中點(diǎn),所以,
因?yàn)樗倪呅?/span>是菱形,所以,
因?yàn)?/span>平面,平面,所以,又,
因?yàn)?/span>平面,所以平面,
所以為與平面所成的角,
因?yàn)?/span>,所以,
因?yàn)?/span>,所以,
所以,
所以與平面所成的角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)建成后對(duì)外出租,租賃付費(fèi)按年收取,標(biāo)準(zhǔn)為:每一個(gè)商鋪?zhàn)赓U不超過1年收費(fèi)20萬元,超過1年的部分每年收取15萬元(不足1年按1年計(jì)算).現(xiàn)甲、乙兩人從該商場(chǎng)各自租賃一個(gè)商鋪,兩人的租賃時(shí)間都不超過3年.設(shè)甲、乙租賃時(shí)間不超過1年的概率分別為, ;租賃時(shí)間1年以上且不超過2年的概率分別為, .甲、乙租賃相互獨(dú)立.
(1)求甲租賃付費(fèi)為50萬元的概率;
(2)求甲、乙兩人租賃付費(fèi)相同的概率;
(3)設(shè)甲、乙兩人租賃付費(fèi)之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象過點(diǎn),且不等式的解集為.
(1)求的解析式;
(2)若在區(qū)間上有最小值,求實(shí)數(shù)的值;
(3)設(shè),若當(dāng)時(shí),函數(shù)的圖象恒在圖象的上方,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(-2,0),B(2,0),曲線C上的動(dòng)點(diǎn)P滿足.
(1)求曲線C的方程;
(2)若過定點(diǎn)M(0,-2)的直線l與曲線C有公共點(diǎn),求直線l的斜率k的取值范圍;
(3)若動(dòng)點(diǎn)Q(x,y)在曲線C上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;
(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若, 是方程()的兩個(gè)不同的實(shí)數(shù)根,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線經(jīng)過,求的值;
(2)若關(guān)于的不等式在上恒成立,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓內(nèi)一點(diǎn)的直線的斜率為,且與橢圓交于兩點(diǎn),設(shè)直線, (為坐標(biāo)原點(diǎn))的斜率分別為,若對(duì)任意,存在實(shí)數(shù),使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,側(cè)棱垂直于底面, 分別是的中點(diǎn).
(1)求證: 平面平面;
(2)求證: 平面;
(3)求三棱錐體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com