精英家教網 > 高中數學 > 題目詳情

【題目】若雙曲線的實軸長為6,焦距為10,右焦點為,則下列結論正確的是(

A.的漸近線上的點到距離的最小值為4B.的離心率為

C.上的點到距離的最小值為2D.的最短的弦長為

【答案】AC

【解析】

根據題意,求出,結合的關系式求出,利用雙曲線的幾何性質進行逐項分析,判斷即可.

由題意知,,即,因為,所以,解得,所以右焦點為,雙曲線的漸近線方程為

對于選項A:由點向雙曲線的漸近線作垂線時,垂線段的長度即為的漸近線上的點到距離的最小值,由點到直線的距離公式可得,,

故選項A正確;

對于選項B:因為,所以雙曲線的離心率為,故選項B錯誤;

對于選項C:當雙曲線上的點為其右頂點時,此時雙曲線上的點到的距離最小為,故選項C正確;

對于選項D:過點且斜率為零的直線與雙曲線的交點為,此時為過點的最短弦為,故選項D錯誤.

故選:AC

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我們知道,目前最常見的骰子是六面骰,它是一顆正立方體,上面分別有一到六個洞(或數字),其相對兩面之數字和必為七.顯然,擲一次六面骰,只能產生六個數之一(正上面).現欲要求你設計一個十進制骰,使其擲一次能產生0~9這十個數之一,而且每個數字產生的可能性一樣.請問:你能設計出這樣的骰子嗎?若能,請寫出你的設計方案;若不能,寫出理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線與圓相交于,兩點,且點的橫坐標為.是拋物線的焦點,過焦點的直線與拋物線相交于不同的兩點,.

1)求拋物線的方程.

2)過點,作拋物線的切線,,的交點,求證:點在定直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為F,過F的直線與拋物線交于A,B兩點,點O為坐標原點,則下列命題中正確的個數為(

面積的最小值為4

②以為直徑的圓與x軸相切;

③記,的斜率分別為,,,則;

④過焦點Fy軸的垂線與直線,分別交于點M,N,則以為直徑的圓恒過定點.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了貫徹落實黨中央對新冠肺炎疫情防控工作的部署和要求,堅決防范疫情向校園蔓延,切實保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網絡平臺等多種方式實施線上教育教學工作.某教育機構為了了解人們對其數學網課授課方式的滿意度,從經濟不發(fā)達的A城市和經濟發(fā)達的B城市分別隨機調查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如下:

若評分不低于80分,則認為該用戶對此教育機構授課方式“認可”,否則認為該用戶對此教育機構授課方式“不認可”.

(Ⅰ)請根據此樣本完成下列2×2列聯表,并據此列聯表分析,能否有95%的把握認為城市經濟狀況與該市的用戶認可該教育機構授課方式有關?

認可

不認可

合計

A城市

B城市

合計

(Ⅱ)在樣本A,B兩個城市對此教育機構授課方式“認可”的用戶中按分層抽樣的方法抽取6人,若在此6人中任選2人參加數學競賽,求A城市中至少有1人參加的概率.

參考公式:,其中

參考數據:

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020年春節(jié)期間,武漢市爆發(fā)了新型冠狀病毒肺炎疫情,在黨中央的堅強領導下,全國人民團結一心,眾志成城,共同抗擊疫情.某中學寒假開學后,為了普及傳染病知識,增強學生的防范意識,提高自身保護能力,校委會在全校學生范圍內,組織了一次傳染病及個人衛(wèi)生相關知識有獎競賽(滿分100),競賽獎勵規(guī)則如下,得分在內的學生獲三等獎,得分在內的學生獲二等獎,得分在內的學生獲一等獎,其他學生不得獎.教務處為了解學生對相關知識的掌握情況,隨機抽取了100名學生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖.

1)現從該樣本中隨機抽取兩名學生的競賽成績,求這兩名學生中恰有一名學生獲獎的概率;

2)若該校所有參賽學生的成績近似服從正態(tài)分布,其中為樣本平均數的估計值,利用所得正態(tài)分布模型解決以下問題:

(i)若該校共有10000名學生參加了競賽,試估計參賽學生中成績超過79分的學生數(結果四舍五入到整數);

(ii)若從所有參賽學生中(參賽學生數大于10000)隨機抽取3名學生進行座談,設其中競賽成績在64分以上的學生數為,求隨機變量的分布列和均值.

附:若隨機變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱的底面是等邊三角形,在底面ABC上的射影為△ABC的重心G.

1)已知,證明:平面平面;

2)已知平面與平面ABC所成的二面角為60°,G到直線AB的距離為a,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

⑴當時,求函數的極值;

⑵若存在與函數的圖象都相切的直線,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國剪紙是我國廣大勞動人民在生產與生活實踐中創(chuàng)造出來的一種平面剪刻藝術.民間剪紙藝術是我國優(yōu)秀的非物質文化遺產之一,在千百年的發(fā)展過程中,積淀了豐厚的文化歷史,取得了卓越的藝術成就.20203月發(fā)行的郵票《中國剪紙(二)》共4枚,第一枚郵票《三娘教子》(如圖1)出自“孟母教子”的故事,講述了母親通過斷織等行為教育孩子努力上進,懂得感恩.圖2是某剪紙藝術家根據第一枚郵票用一張半徑為4個單位的圓形紙片裁剪而成的《三娘教子》剪紙.為了測算圖2中有關部分的面積,在圓形區(qū)域內隨機投擲400個點,其中落入圖案上的點有225個,據此可估計剪去部分紙片的面積為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案