10.設函數(shù)f(x)=xm-ax的導函數(shù)f′(x)=2x+1,則a•m的值為( 。
A.1B.2C.3D.-2

分析 根據(jù)題意,對f(x)求導可得f′(x)=mxm-1-a,進而分析可得m=2,a=-1,計算可得am的值.

解答 解:根據(jù)題意,f(x)=xm-ax,其導數(shù)為f′(x)=mxm-1-a,
又由題意,f′(x)=2x+1,
則有m=2,a=-1;
則a•m=-2;
故選:D.

點評 本題考查導數(shù)的計算,關鍵是掌握導數(shù)的計算公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD是正三角形,底面ABCD是直角梯形,AB∥CD,CD⊥AD,CD=2AB=2AD=2,M為PC的中點.
(Ⅰ)求證:BM∥平面PAD;
(Ⅱ)求證:直線BM⊥平面PDC;
(Ⅲ)求直線PD與平面BDM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an}的前n項和Sn=$\frac{{n}^{2}+3n}{4}$,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設bn=(n+1)4${\;}^{{a}_{n}}$-$\frac{1}{4{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.極坐標系與直角坐標系xOy有相同的長度單位,以原點為極點,以x軸正半軸為極軸,曲線C1的極坐標方程為ρ=4sinθ,曲線C2的參數(shù)方程為$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t為參數(shù),0≤α<π),射線$θ=φ,θ=φ+\frac{π}{4},θ=φ-\frac{π}{4}$與曲線C1交于(不包括極點O)三點A,B,C.
(1)求證:$|{OB}|+|{OC}|=\sqrt{2}|{OA}|$;
(2)當$φ=\frac{5π}{12}$時,B,C兩點在曲線C2上,求m與α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)$f(x)={x^3}-3{x^2}+2,g(x)=\left\{\begin{array}{l}x+\frac{1}{x}\;\;\;x>0\\-{x^2}-4x-2\;\;\;x≤0\end{array}\right.$,則方程g[f(x)]-a=0(a>0)的根的個數(shù)不可能為( 。
A.6個B.5個C.4個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.執(zhí)行如圖程序框圖(見上圖),如果輸入的x,t均為2,S=(  )
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.數(shù)列{an}的通項${a_n}=2n•({{{cos}^2}\frac{nπ}{3}-{{sin}^2}\frac{nπ}{3}})$,其前n項和為Sn,則S30=30.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知二次函數(shù)f(x)=ax2-4bx+2.
(Ⅰ)任取a∈{1,2,3},b∈{-1,1,2,3,4},記“f(x)在區(qū)間[1,+∞)上是增函數(shù)”為事件A,求A發(fā)生的概率;
(Ⅱ)任。╝,b)∈{(a,b)|a+4b-6≤0,a>0,b>0},記“關于x的方程f(x)=0有一個大于1的根和一個小于1的根”為事件B,求B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列語句中,不能成為命題的是( 。
A.6>10B.x>2C.若$\overrightarrow{a}$⊥$\overrightarrow$,則$\overrightarrow{a}$•$\overrightarrow$=0D.0∈N

查看答案和解析>>

同步練習冊答案