【題目】如圖,在四棱錐中,已知棱,,兩兩垂直,長度分別為1,2,2.若(),且向量與夾角的余弦值為.
(1)求的值;
(2)求直線與平面所成角的正弦值.
【答案】(1);(2).
【解析】
試題(1)以為坐標(biāo)原點(diǎn),、、分別為、、軸建立空間直角坐標(biāo)系,寫出,的坐標(biāo),根據(jù)空間向量夾角余弦公式列出關(guān)于的方程可求;(2)設(shè)岀平面的法向量為,根據(jù),進(jìn)而得到,從而求出,向量的坐標(biāo)可以求出,從而可根據(jù)向量夾角余弦的公式求出,從而得和平面所成角的正弦值.
試題解析:(1)依題意,以為坐標(biāo)原點(diǎn),、、分別為、、軸建立空間直角坐標(biāo)系
,因?yàn)?/span>,所以,從而,則由,解得(舍去)或.
(2)易得,,設(shè)平面的法向量,
則,,即,且,所以,不妨取,則平面的一個(gè)法向量,又易得,故,所以直線與平面所成角的正弦值為.
考點(diǎn): 1、空間兩向量夾角余弦公式;2、利用向量求直線和平面說成角的正弦.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),().
(Ⅰ)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),若,若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.(是自然對(duì)數(shù)的底數(shù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面ABCD,底面ABCD是直角梯形,,,.
(1)在線段PA上找一點(diǎn)E,使得平面PCD,并證明;
(2)在(1)的條件下,若,求點(diǎn)E到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖;
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
附:參考公式:.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《數(shù)書九章》是中國南宋時(shí)期杰出數(shù)學(xué)家秦九韶的著作,全書十八卷共八十一個(gè)問題,分為九類,每類九個(gè)問題,《數(shù)書九章》中記錄了秦九昭的許多創(chuàng)造性成就,其中在卷五“三斜求積”中提出了已知三角形三邊,,求面積的公式,這與古希臘的海倫公式完成等價(jià),其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí),一為從隅,開平方得積.”若把以上這段文字寫成公式,即.現(xiàn)有滿足,且的面積,請(qǐng)運(yùn)用上述公式判斷下列命題正確的是
A.周長為
B.三個(gè)內(nèi)角,,成等差數(shù)列
C.外接圓直徑為
D.中線的長為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,,AB的垂直平分線分別交AB,AC于D、E(圖一),沿DE將折起,使得平面平面BDEC(圖二).
(1)若F是AB的中點(diǎn),求證:平面ADE.
(2)P是AC上任意一點(diǎn),求證:平面平面PBE.
(3)P是AC上一點(diǎn),且平面PBE,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量滿足,則以下說法正確的有( )個(gè).
①;
②對(duì)于平面內(nèi)任一向量,有且只有一對(duì)實(shí)數(shù),使;
③若,且,則的范圍為;
④設(shè),且在處取得最小值,當(dāng)時(shí),則;
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com