【題目】已知函數(shù) |﹣ |,其中﹣3≤a≤1.
(Ⅰ)當(dāng)a=1時(shí),解不等式f(x)≥1;
(Ⅱ)對(duì)于任意α∈[﹣3,1],不等式f(x)≥m的解集為空集,求實(shí)數(shù)m的取值范圍.
【答案】解:(Ⅰ)當(dāng)a=1時(shí),f(x)=|x+2|﹣|x|,
①當(dāng)x<﹣2時(shí),不等式即為﹣x﹣2+x≥1,不等式無(wú)解;
②當(dāng)﹣2≤x≤0時(shí),不等式即為x+2+x≥1,解得 ;
③當(dāng)x>0時(shí),不等式即為x+2﹣x≥1,不等式恒成立.
綜上所述,不等式的解集是 .
(Ⅱ)由 .
而 = 4+4=8,
∴ ,∴ .
要使不等式f(x)≥m的解集為空集,則有 ,
所以,實(shí)數(shù)m的取值范圍是
【解析】(I)討論x的范圍,去掉絕對(duì)值符號(hào),解出x的范圍;(II)利用絕對(duì)值不等式的性質(zhì)和基本不等式得出f(x)的最大值,即可得出m的范圍.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用絕對(duì)值不等式的解法的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=4,an+1= ,n∈N* , Sn為{an}的前n項(xiàng)和.
(Ⅰ)求證:n∈N*時(shí),an>an+1;
(Ⅱ)求證:n∈N*時(shí),2≤Sn﹣2n< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)p(x)=lnx+x﹣4,q(x)=axex(a∈R).
(Ⅰ)若a=e,設(shè)f(x)=p(x)﹣q(x),試證明f′(x)存在唯一零點(diǎn)x0∈(0, ),并求f(x)的最大值;
(Ⅱ)若關(guān)于x的不等式|p(x)|>q(x)的解集中有且只有兩個(gè)整數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用計(jì)算機(jī)產(chǎn)生120個(gè)隨機(jī)正整數(shù),其最高位數(shù)字(如:34的最高位數(shù)字為3,567的最高位數(shù)字為5)的頻數(shù)分布圖如圖所示,若從這120個(gè)正整數(shù)中任意取出一個(gè),設(shè)其最高位數(shù)字為d(d=1,2,…,9)的概率為P,下列選項(xiàng)中,最能反映P與d的關(guān)系的是( )
A.P=lg(1+ )
B.P=
C.P=
D.P= ×
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第96屆(春季)全國(guó)糖酒商品交易會(huì)于2017年3月23日至25日在四川舉辦.交易會(huì)開(kāi)始前,展館附近一家川菜特色餐廳為了研究參會(huì)人數(shù)與餐廳所需原材料數(shù)量的關(guān)系,查閱了最近5次交易會(huì)的參會(huì)人數(shù)x(萬(wàn)人)與餐廳所用原材料數(shù)量t(袋),得到如下數(shù)據(jù):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
參會(huì)人數(shù)x(萬(wàn)人) | 11 | 9 | 8 | 10 | 12 |
原材料t(袋) | 28 | 23 | 20 | 25 | 29 |
(Ⅰ)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出t關(guān)于x的線性回歸方程 ;
(Ⅱ)已知購(gòu)買(mǎi)原材料的費(fèi)用C(元)與數(shù)量t(袋)的關(guān)系為 投入使用的每袋原材料相應(yīng)的銷(xiāo)售收入為600元,多余的原材料只能無(wú)償返還.若餐廳原材料現(xiàn)恰好用完,據(jù)悉本次交易會(huì)大約有14萬(wàn)人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買(mǎi)多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)L=銷(xiāo)售收入﹣原材料費(fèi)用).
(參考公式: = , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b∈R,函數(shù) ,g(x)=ex(e為自然對(duì)數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內(nèi)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù) 在(0,2)上存在兩個(gè)極值點(diǎn),則a的取值范圍是( )
A.(﹣∞,﹣ )
B.(﹣∞,﹣ )
C.(﹣∞,﹣ )∪(﹣ ,﹣ )
D.(﹣e,﹣ )∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】| |=1,| |= , =0,點(diǎn)C在∠AOB內(nèi),且∠AOC=30°,設(shè) =m +n (m、n∈R),則 等于( )
A.
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1⊥底面ABC,∠A1AC=60°,AC=2AA1=4,點(diǎn)D,E分別是AA1 , BC的中點(diǎn).
(1)證明:DE∥平面A1B1C;
(2)若AB=2,∠BAC=60°,求直線DE與平面ABB1A1所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com