18.已知直線l1:ax+4y-c=0與直線l2:6x+8y+3=0平行,且l1與圓M:x2+(y+c)2=1相切,則c的值為( 。
A.±1B.±$\sqrt{2}$C.±2D.±3

分析 由直線l1:ax+4y-c=0與直線l2:6x+8y+3=0平行,所以a=3,又l1與圓M:x2+(y+c)2=1相切,所以$\frac{|-4c-c|}{\sqrt{9+16}}$=1,即可求出c的值.

解答 解:因?yàn)橹本l1:ax+4y-c=0與直線l2:6x+8y+3=0平行,所以a=3,
又l1與圓M:x2+(y+c)2=1相切,
所以$\frac{|-4c-c|}{\sqrt{9+16}}$=1,
所以c=±1.
故選A.

點(diǎn)評 本題考查直線與圓的位置關(guān)系,直線與直線的平行,考查轉(zhuǎn)化思想與計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的離心率等于$\frac{{\sqrt{5}}}{2}$,且點(diǎn)$({\sqrt{5},\frac{1}{2}})$在雙曲線C上,則雙曲線C的方程為( 。
A.$\frac{y^2}{16}-\frac{x^2}{4}=1$B.${y^2}-\frac{x^2}{4}=1$C.$\frac{y^2}{4}-{x^2}=1$D.$\frac{x^2}{4}-{y^2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.非零向量$\overrightarrow a,\overrightarrow b$,原命題:若夾角為銳角則$|{\overrightarrow a+\overrightarrow b}|>|{\overrightarrow a-\overrightarrow b}|$,則原命題與逆命題的真假為(  )
A.真真B.假假C.真假D.假真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對大于或等于2的自然數(shù),有如下分解方式:
22=1+3   
32=1+3+5       
42=1+3+5+7
23=3+5   
33=7+9+11      
43=13+15+17+19
根據(jù)上述分解規(guī)律,若n2=1+3+5+…+19,m3(m∈N*)的分解中最小的數(shù)是43,則m+n=17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知正項(xiàng)等比數(shù)列{an}滿足a7=a6+2a5.若存在兩項(xiàng)am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,則$\frac{1}{m}$+$\frac{9}{n}$的最小值為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.為了了解某學(xué)校1200名高中男生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況.根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,據(jù)此估計(jì)該校高中男生體重在66~79g的人數(shù)為( 。
A.360B.336C.300D.280

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)y=f(x)和y=f(x-2)都是偶函數(shù),且f(3)=3,則f(-5)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.角α的終邊經(jīng)過點(diǎn)P(x,4),且sinα=$\frac{4}{5}$,則x=±3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.觀察下面的數(shù)陣,則第20行第9個數(shù)是392.

查看答案和解析>>

同步練習(xí)冊答案