已知直線,點P是線性約束條件所表示區(qū)域內一動點,,垂足分別為M、N,且(O為坐標原點)

   (Ⅰ)求動點P的軌跡方程;

   (Ⅱ)是否存在過點(2,0)的直線與(Ⅰ)中軌跡交于點A、B,線段AB的垂直平分線交 軸于Q點,且使得是等邊三角形。若存在,求出直線的方程,若不存在,說明理由。

 

 

【答案】

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l1:x-y=0,l2:x+y=0,點P是線性約束條件
x-y≥0
x+y≥0
所表示區(qū)域內一動點,PM⊥l1,PN⊥l2,垂足分別為M、N,且S△OMN=
1
2
(O為坐標原點).
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)是否存在過點(2,0)的直線l與(Ⅰ)中軌跡交于點A、B,線段AB的垂直平分線交y軸于Q點,且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線l1:x-y=0,l2:x+y=0,點P是線性約束條件數(shù)學公式所表示區(qū)域內一動點,PM⊥l1,PN⊥l2,垂足分別為M、N,且數(shù)學公式(O為坐標原點).
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)是否存在過點(2,0)的直線l與(Ⅰ)中軌跡交于點A、B,線段AB的垂直平分線交y軸于Q點,且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線l1:x-y=0,l2:x+y=0,點P是線性約束條件
x-y≥0
x+y≥0
所表示區(qū)域內一動點,PM⊥l1,PN⊥l2,垂足分別為M、N,且S△OMN=
1
2
(O為坐標原點).
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)是否存在過點(2,0)的直線l與(Ⅰ)中軌跡交于點A、B,線段AB的垂直平分線交y軸于Q點,且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省成都市石室中學高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

已知直線l1:x-y=0,l2:x+y=0,點P是線性約束條件所表示區(qū)域內一動點,PM⊥l1,PN⊥l2,垂足分別為M、N,且(O為坐標原點).
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)是否存在過點(2,0)的直線l與(Ⅰ)中軌跡交于點A、B,線段AB的垂直平分線交y軸于Q點,且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案