點(diǎn)(a+1,a-1)在圓x2+y2-2ay-4=0的內(nèi)部,則a的取值范圍是
 
考點(diǎn):點(diǎn)與圓的位置關(guān)系
專題:直線與圓
分析:直接把點(diǎn)(a+1,a-1)代入圓的方程左邊小于0,解不等式可得a的范圍.
解答: 解:∵點(diǎn)(a+1,a-1)在圓x2+y2-2ay-4=0的內(nèi)部(不包括邊界),
∴(a+1)2+(a-1)2-2a(a-1)-4<0,
整理得:a<1.
故答案為:(-∞,1).
點(diǎn)評(píng):本題考查了點(diǎn)與圓的位置關(guān)系,關(guān)鍵是明確點(diǎn)在圓上,圓內(nèi),圓外所得到的等式或不等式,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某校高一學(xué)生1000人,每周一次同時(shí)在兩個(gè)可容納600人的會(huì)議室,開設(shè)“音樂欣賞”與“美術(shù)鑒賞”的校本課程.要求每個(gè)學(xué)生都參加,要求第一次聽“音樂欣賞”課的人數(shù)為m(400<m<600),其余的人聽“美術(shù)鑒賞”課;從第二次起,學(xué)生可從兩個(gè)課中自由選擇.據(jù)往屆經(jīng)驗(yàn),凡是這一次選擇“音樂欣賞”的學(xué)生,下一次會(huì)有20%改選“美術(shù)鑒賞”,而選“美術(shù)鑒賞”的學(xué)生,下次會(huì)有30%改選“音樂欣賞”,用an,bn分別表示在第n次選“音樂欣賞”課的人數(shù)和選“美術(shù)鑒賞”課的人數(shù).
(1)若m=500,分別求出第二次,第三次選“音樂欣賞”課的人數(shù)a2,a3;
(2)①證明數(shù)列{an-600}是等比數(shù)列,并用n表示an
②若要求前十次參加“音樂欣賞”課的學(xué)生的總?cè)舜尾怀^5800,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,過F2作直線l與橢圓C交于點(diǎn)M、N.
(1)若橢圓C的離心率為
1
2
,右準(zhǔn)線的方程為x=4,M為橢圓C上頂點(diǎn),直線l交右準(zhǔn)線于點(diǎn)P,求
1
PM
+
1
PN
的值;
(2)當(dāng)a2+b2=4時(shí),設(shè)M為橢圓C上第一象限內(nèi)的點(diǎn),直線l交y軸于點(diǎn)Q,F(xiàn)1M⊥F1Q,證明:點(diǎn)M在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),命題:
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn);
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn);
③如果k與b都是有理數(shù),則直線y=kx+b必經(jīng)過無窮多個(gè)整點(diǎn);
④存在恰經(jīng)過一個(gè)整點(diǎn)的直線;
其中的真命題是
 
(寫出所有真命題編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,則數(shù)列{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

打一口深21米的井,打到第一米深處時(shí)需要40分鐘,從第一米深處打到第二米深處需要50分鐘,以后每深一米都要比前一米多10分鐘,則打到最后一米深處要用
 
小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,a2,…a10成等比數(shù)列,且a1a2…a10=32,記x=a1+a2+…+a10,y=
1
a1
+
1
a2
+…+
1
a10
,則
x
y
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
1
x
(x>0,a>0)在x=2時(shí)取得最小值,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,若輸出的結(jié)果為2,則輸入的x為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案