【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實(shí)例,若輸入x的值為2,則輸出v的值為(
A.210﹣1
B.210
C.310﹣1
D.310

【答案】D
【解析】解:輸入的x=2,v=1,k=1,滿足進(jìn)行循環(huán)的條件,v=2+C101 , k=2,滿足進(jìn)行循環(huán)的條件,v=22+2C101+C102 ,

∴v=210+29C101+…+C1010=310
故輸出的v值為:310 ,
故選D.
【考點(diǎn)精析】本題主要考查了程序框圖的相關(guān)知識點(diǎn),需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,P為棱C1D1的中點(diǎn),Q為棱BB1上的點(diǎn),且BQ=λBB1(λ≠0).
(1)若 ,求AP與AQ所成角的余弦值;
(2)若直線AA1與平面APQ所成的角為45°,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,球的表面積為,球心為空間直角坐標(biāo)系的原點(diǎn),且球分別與軸的正交半軸交于三點(diǎn),已知球面上一點(diǎn).

(1)求兩點(diǎn)在球上的球面距離;

(2)過點(diǎn)作平面的垂線,垂足,求的坐標(biāo),并計算四面體的體積;

(3)求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx,(a∈R). (Ⅰ)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0, )上無零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期末考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是.

(1)若成績在的學(xué)生中男生比女生多一人,從成績在的學(xué)生中任選2人,求此2人都是男生的概率;

(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,已知,且對于任意正整數(shù)n都有

(1)令,求數(shù)列的通項公式;

(2)求的通項公式;

(3)設(shè)是一個正數(shù),無論為何值,都有一個正整數(shù)使成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)一個盒子里裝有三張卡片,分別標(biāo)記有數(shù)字,,,這三張卡片除標(biāo)記的數(shù)字外完全相同。隨機(jī)有放回地抽取次,每次抽取張,將抽取的卡片上的數(shù)字依次記為,.

)求抽取的卡片上的數(shù)字滿足的概率;

)求抽取的卡片上的數(shù)字,,不完全相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對高二年段的男生進(jìn)行體檢,現(xiàn)將高二男生的體重(kg)數(shù)據(jù)進(jìn)行整理后分成6組,并繪制部分頻率分布直方圖(如圖所示).已知第三組[60,65)的人數(shù)為200.根據(jù)一般標(biāo)準(zhǔn),高二男生體重超過65kg屬于偏胖,低于55kg屬于偏瘦.觀察圖形的信息,回答下列問題:

(1)求體重在[60,65)內(nèi)的頻率,并補(bǔ)全頻率分布直方圖;

(2)用分層抽樣的方法從偏胖的學(xué)生中抽取6人對日常生活習(xí)慣及體育鍛煉進(jìn)行調(diào)查,則各組應(yīng)分別抽取多少人?

(3)根據(jù)頻率分布直方圖,估計高二男生的體重的中位數(shù)與平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l過點(diǎn)M(3,4),其傾斜角為45°,圓C的參數(shù)方程為 .再以原點(diǎn)為極點(diǎn),以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系xoy有相同的長度單位.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點(diǎn)A、B,求|MA||MB|的值.

查看答案和解析>>

同步練習(xí)冊答案