分析 求出原函數(shù)的定義域,再求出內(nèi)函數(shù)t=$\frac{1}{x-2}$的單調(diào)區(qū)間,結合外函數(shù)指數(shù)函數(shù)為減函數(shù),可得原函數(shù)的單調(diào)增區(qū)間.
解答 解:函數(shù)的定義域為{x|x≠2},
令t=$\frac{1}{x-2}$,則函數(shù)t=$\frac{1}{x-2}$的減區(qū)間為(-∞,2),(2,+∞),
又外函數(shù)y=$(\frac{1}{2})^{t}$為減函數(shù),
∴函數(shù)y=($\frac{1}{2}$)${\;}^{\frac{1}{x-2}}}$的單調(diào)遞增區(qū)間為(-∞,2),(2,+∞).
故答案為:(-∞,2),(2,+∞).
點評 本題主要考查了復合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對應復合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關系進行判斷,判斷的依據(jù)是“同增異減”,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2014}{2015}$ | B. | $\frac{2015}{2016}$ | C. | $\frac{2016}{2017}$ | D. | $\frac{2017}{2018}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com