如圖,已知拋物線y2=2px的焦點(diǎn)F與雙曲線
x2
3
-y2=1的右焦點(diǎn)重合,過拋物線焦點(diǎn)F的直線交該拋物線于A,B兩點(diǎn),|AF|=3,則p=
 
;直線AB斜率等于
 
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì),雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線
x2
3
-y2=1的右焦點(diǎn),可得p與拋物線方程,利用拋物線的定義,可得A的坐標(biāo),即可求出直線AB斜率.
解答: 解:雙曲線
x2
3
-y2=1的右焦點(diǎn)為(2,0),∴拋物線方程為y2=8x,p=4.
∵|AF|=3,∴xA+2=3,∴xA=1
代入拋物線方程可得yA=±2
2

∵點(diǎn)A在x軸上方,∴A(1,2
2
),
∴直線AB斜率等于
2
2
1-2
=-2
2

故答案為:4,-2
2
點(diǎn)評(píng):本題考查拋物線、雙曲線的性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

y=3sin(2x+
3
)的振幅為
 
初相為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
25
=1的焦點(diǎn)為F1,F(xiàn)2,AB是橢圓過焦點(diǎn)F1的弦,則△ABF2的周長(zhǎng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x5,x∈[0,1]
x
,x∈[1,2]
,求曲線y=f(x)與x軸、直線x=0、x=2所圍成的圖形的面積
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F1、F2是橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點(diǎn),過點(diǎn)F2作AB⊥x軸交橢圓于A、B兩點(diǎn),若△F1AB為等腰直角三角形,且∠AF1B=90°,則橢圓的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是正數(shù),且滿足2<a+2b<4,那么
b+1
a+1
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)E(0,2),拋物線C:y2=2px(p>0)的焦點(diǎn)為F,線段EF與拋物線C的交點(diǎn)為M,過M作拋物線準(zhǔn)線的垂線,垂足為Q,若∠EQF=90°,則p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|y=log2(-x2+2x)},B={y|y=1+
x
},那么A∩∁UB=( 。
A、{x|0<x<1}
B、{x|x<0}
C、{x|x>2}
D、{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x+1>0},B={x|x≤a},若A∩B≠Ф,則實(shí)數(shù)a的取值范圍是(  )
A、a<-1B、a≤-1
C、a>-1D、a≥-1

查看答案和解析>>

同步練習(xí)冊(cè)答案