若sin(
12
+α)=-
1
4
,求cos(
π
12
-α)的值.
考點(diǎn):兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:
π
12
-α=
π
2
-(
π
12
-α),根據(jù)誘導(dǎo)公式即可求解.
解答: 解:∵sin(
12
+α)=-
1
4

∴cos(
π
12
-α)=sin[
π
2
-(
π
12
-α)]=sin(
12
+α)=-
1
4
點(diǎn)評(píng):本題主要考查了誘導(dǎo)公式的應(yīng)用,正確分析角的關(guān)系是解題的關(guān)鍵,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“已知a、b∈N*,如果ab可被 5 整除,那么a、b 中至少有一個(gè)能被 5 整除”時(shí),假設(shè)的內(nèi)容應(yīng)為(  )
A、a、b都能被5整除
B、a、b都不能被5整除
C、a、b不都能被5整除
D、a不能被5整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

討論函數(shù)y=
x+a
x+b
的導(dǎo)函數(shù),及其單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,Sn為前n項(xiàng)和.
(1)若a1+a9+a12+a20=20,求S20;
(2)若S1=1,S8=4,求a17+a18+a19+a20的值;
(3)若已知首項(xiàng)a1=13,且S3=S11,問(wèn)此數(shù)列前多少項(xiàng)的和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,則實(shí)數(shù)a,b必滿足
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集I={2,3,5},A={2,|a-5|},∁IA={5},則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,復(fù)數(shù)
i
i-2
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為( 。
A、(
1
5
,
2
5
B、(-
1
5
,-
2
5
C、(-
1
5
,
2
5
D、(
1
5
,-
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知PA,PB切⊙O于A,B兩點(diǎn),CD切⊙O于點(diǎn)E,交PA,PB于點(diǎn)C,D,若⊙O的半徑為r,△PCD的周長(zhǎng)為3r,則
求:tan∠APB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,P三點(diǎn)共線,O為空間不與A,B,P共線的任意一點(diǎn),
OP
OA
OB
,求實(shí)數(shù)α+β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案