已知向量
a
=(
3
,-1),
b
=(cos
x
3
,sin
x
3
),記f(x)=2
a
b
sin
x
3

(1)若x∈[0,π],求函數(shù)f(x)的值域;
(2)設(shè)在△ABC中,角A、B、C所對的邊分別為a、b、c,若f(c)=1,且b2=ac,求sinA的值.
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:(I)利用向量的數(shù)量積運算、倍角公式、兩角和差的正弦公式、正弦函數(shù)的單調(diào)性即可得出;
(II)利用正弦函數(shù)的單調(diào)性有界性、勾股定理、直角三角形的邊角關(guān)系即可得出.
解答: 解:(Ⅰ)f(x)=2
3
sin
x
3
cos
x
3
-2sin2
x
3
=
3
sin
2x
3
+cos
2x
3
-1
=2sin(
2x
3
+
π
6
)-1

∵x∈[0,π],∴
π
6
2x
3
+
π
6
6
,
1
2
≤sin(
2x
3
+
π
6
)≤1

∴0≤2sin(
2x
3
+
π
6
)-1≤1
,
∴f(x)的值域為[0,1].
(Ⅱ)由(Ⅰ)得f(C)=2sin(
2C
3
+
π
6
)-1=1
,
sin(
2C
3
+
π
6
)=1
,
又C∈(0,π),
π
6
2C
3
+
π
6
6
,
C=
π
2
,
在Rt△ABC中,∵b2=ac,c2=a2+b2
c2=a2+ac⇒(
a
c
)2+
a
c
-1=0
,
又c>a,解得
a
c
=
-1+
5
2
,
sinA=
a
c
=
5
-1
2
點評:本題考查了向量的數(shù)量積運算、倍角公式、兩角和差的正弦公式、正弦函數(shù)的單調(diào)性、勾股定理、直角三角形的邊角關(guān)系,考查了推理能力和計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的圖象是一條連續(xù)不斷的曲線,滿足f(2.25)<0,f(2.5)>0,f(2.75)>0,則下列區(qū)間中,函數(shù)f(x)必然有零點的一個區(qū)間是(  )
A、(2,2.25)
B、(2.25,2.5)
C、(2.5,2.75)
D、(2.75,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的函數(shù),滿足f(x)+f(-x)=0,f(x-1)=f(x+1),當(dāng)x∈[0,1),f(x)=
2x
4x+1
,函數(shù)f(x)的最小值為(  )
A、-
11
12
B、-
1
4
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1、2、3、4、5、6這六個數(shù)中,每次取出兩個不同數(shù)記為a、b,則共可得到3
b
a
的不同數(shù)值的個數(shù)( 。
A、20B、22C、24D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“對任意x∈R,總有x2+1>0”的否定是( 。
A、“對任意x∉R,總有x2+1>0”
B、“對任意x∈R,總有x2+1≤0”
C、“存在x∈R,使得x2+1>0”
D、“存在x∈R,使得x2+1≤0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①“a>b”是“ac2>bc2”的必要條件;
②對于橢圓來說,離心率e越大橢圓越圓,離心率越小,橢圓越扁;
③給定兩個命題p,q,若p是¬q的充分不必要條件,則¬p也是q的充分不必要條件;
④若空間任意一點O和不共線的三點A,B,C,滿足向量關(guān)系式:
OP
=x
OA
+y
OB
+z
OC
,則P,A,B,C四點共面的充要條件是:x+y+z=1.
其中所有真命題的序號是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,M為PD的中點.求證:PB∥平面ACM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD-A1B1C1D1是長方體,AB=AD=a,AA1=2a.
(1)求多面體A1B1C1D1-BCD的體積;
(2)求證:平面A1BD⊥平面ACC1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f[g(x)]=sin2x,g(x)=sin(x+
π
4
),則f(
1
3
)=
 

查看答案和解析>>

同步練習(xí)冊答案