分析 (1)連結(jié)AC,設(shè)AC與BD交于O點,連結(jié)EO,易證EO為△PAC的中位線,從而OE∥PA,再利用線面平行的判斷定理即可證得PA∥平面BDE;
(2)依題意,易證DE⊥底面PBC,再利用面面垂直的判斷定理即可證得平面BDE⊥平面PBC;
(3)將幾何體放到正方體中,則可得直線AB與平面PBC所成角的大。
解答 (1)證明:連結(jié)AC,設(shè)AC與BD交于O點,連結(jié)EO,
由O,E分別為AC,CP中點,
∴OE∥PA
又OE?平面EDB,PA?平面EDB,
∴PA∥平面EDB.(5分)
(2)證明:由PD⊥平面ABCD∴PD⊥BC又CD⊥BC,
∴BC⊥平面PCD,DE⊥BC.(8分)
由PD=DC,E為P中點,故DE⊥PC.
∴DE⊥平面PBC(10分)
(3)解:將幾何體放到正方體中,則可得直線AB與平面PBC所成角的大小為45°.(14分)
點評 本題主要考查線與線,線與面,面與面的位置關(guān)系和線面平行和線面垂直的判定定理的靈活運用,培養(yǎng)學(xué)生形成知識網(wǎng)絡(luò)及知識間相互轉(zhuǎn)化的能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 64 | C. | 128 | D. | 254 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{100}$+$\frac{y^2}{36}$=1 | B. | $\frac{y^2}{400}$+$\frac{x^2}{336}$=1 | C. | $\frac{y^2}{100}$+$\frac{x^2}{36}$=1 | D. | $\frac{y^2}{20}$+$\frac{x^2}{12}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5$\sqrt{3}$N | B. | 5N | C. | 10N | D. | 5$\sqrt{2}$N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com