分析 (1)以點C為坐標原點,以CA,CB所在直線分別為x軸和y軸,過點C作與平面ABC垂直的直線為z軸,建立直角坐標系C-xyz,利用向量法能證明EM⊥CM.
(2)求出平面CDE的法向量,利用向量法能求出CM與平面CDE所成的角的正弦值.
(3)求出平面CDE的法向量和平面EMC的法向量,利用向量法能求出二面角M-CE-D的余弦值.
解答 證明:(1)如圖,以點C為坐標原點,以CA,CB所在直線分別為x軸和y軸,
過點C作與平面ABC垂直的直線為z軸,建立直角坐標系C-xyz,
設(shè)EA=a,則A(2a,0,0),B(0,2a,0),E(2a,0,a),D(0,2a,2a),M(a,a,0).
$\overrightarrow{EM}$=(-a,a,-a),$\overrightarrow{CM}$=(a,a,0),
∴$\overrightarrow{EM}$•$\overrightarrow{CM}$=0,∴EM⊥CM.
解:(2)C(0,0,0),M(a,a,0),E(2a,0,a),D(0,2a,2a),
$\overrightarrow{CM}$=(a,a,0),$\overrightarrow{CD}$=(0,2a,2a),$\overrightarrow{CE}$=(2a,0,a),
設(shè)平面CDE的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=2ay+2az=0}\\{\overrightarrow{n}•\overrightarrow{CE}=2ax+az=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,2,-2),
設(shè)向量CM與平面CDE所成的角為θ,
則sinθ=$\frac{|\overrightarrow{n}•\overrightarrow{CM}|}{|\overrightarrow{n}|•|\overrightarrow{CM}|}$=$\frac{3a}{\sqrt{2}a•\sqrt{9}}$=$\frac{\sqrt{2}}{2}$.
∴CM與平面CDE所成的角的正弦值為$\frac{\sqrt{2}}{2}$.
(3)平面CDE的法向量$\overrightarrow{n}$=(1,2,-2),
設(shè)平面EMC的法向量為$\overrightarrow{m}$=(x1,y1,z1),
∵$\overrightarrow{EM}$(-a,a,-a),$\overrightarrow{CM}$=(a,a,0),
∴$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{EM}=-a{x}_{1}+a{y}_{1}-a{z}_{1}=0}\\{\overrightarrow{m}•\overrightarrow{CM}=a{x}_{1}+a{y}_{1}=0}\end{array}\right.$取x1=1,得$\overrightarrow{m}$=(1,-1,-2),
設(shè)二面角M-CE-D的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{\sqrt{9}•\sqrt{6}}$=$\frac{\sqrt{6}}{6}$.
∴二面角M-CE-D的余弦值為$\frac{\sqrt{6}}{6}$.
點評 本題考查異面直線垂直的證明,考查線面角的余弦值的求法,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | 25 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (9,49) | B. | (13,49] | C. | (13,45) | D. | (13,49) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -9 | B. | -8 | C. | -7 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com