求過點(diǎn)P(4,-1)且與圓C:x2+y2+2x-6y+5=0切于點(diǎn)M(1,2)的圓的方程.
所求圓的方程為(x-3)2+(y-1)2=5
方法一 設(shè)所求圓的圓心為A(m,n),半徑為r,
則A,M,C三點(diǎn)共線,且有|MA|=|AP|=r,
因?yàn)閳AC:x2+y2+2x-6y+5=0的圓心為C(-1,3),
則,
解得m=3,n=1,r=,
所以所求圓的方程為(x-3)2+(y-1)2=5.
方法二 因?yàn)閳AC:x2+y2+2x-6y+5=0過點(diǎn)M(1,2)的切線方程為2x-y=0,
所以設(shè)所求圓A的方程為
x2+y2+2x-6y+5+(2x-y)=0,
因?yàn)辄c(diǎn)P(4,-1)在圓上,所以代入圓A的方程,
解得=-4,
所以所求圓的方程為x2+y2-6x-2y+5=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
2 |
2 |
AP |
QB |
AQ |
PB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
n+2 |
m+1 |
PA |
PB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com