對于n∈N*,將n表示為n=+…+,當(dāng)i=k時,ai=1,當(dāng)0≤i≤k-1時,ai為0或1.定義bn如下:在n的上述表示中,當(dāng)a,a1,a2,…,ak中等于1的個數(shù)為奇數(shù)時,bn=1;否則bn=0.
(1)b2+b4+b6+b8=   
(2)記cm為數(shù)列{bn}中第m個為0的項與第m+1個為0的項之間的項數(shù),則cm的最大值是   
【答案】分析:(1)由題設(shè)定義可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,從而b2=1,b4=1,b6=0,b8=1,故可求b2+b4+b6+b8的值;
(2)設(shè){bn}中第m個為0的項為bi,即bi=0,構(gòu)造二進(jìn)制數(shù)(i)10=(akak-1…a1a2,則akak-1…a1a中1的個數(shù)為偶數(shù),再進(jìn)行分類討論:當(dāng)a2a1a=000時,cm=2;當(dāng)a2a1a=001時,cm=0;當(dāng)a2a1a=010時,cm=1;當(dāng)a2a1a=011時,cm=0;當(dāng)a2a1a=100時,cm=2;當(dāng)a2a1a=101時,cm=0;當(dāng)a=0,前面有奇數(shù)個1時,cm=1; 當(dāng)a=0,前面有偶數(shù)個1時,cm=2;當(dāng)末位有奇數(shù)個1時,cm=1;當(dāng)末位有偶數(shù)個1時,cm=0,由此可得cm的最大值.
解答:解:(1)由題設(shè)定義可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,∴b2=1,b4=1,b6=0,b8=1
∴b2+b4+b6+b8=3
(2)設(shè){bn}中第m個為0的項為bi,即bi=0,構(gòu)造二進(jìn)制數(shù)(i)10=(akak-1…a1a2,則akak-1…a1a中1的個數(shù)為偶數(shù),當(dāng)a2a1a=000時,bi+1=1,bi+2=1,bi+3=0,cm=2;
當(dāng)a2a1a=001時,bi+1=0,cm=0;當(dāng)a2a1a=010時,bi+1=1,bi+2=0,cm=1;當(dāng)a2a1a=011時,bi+1=0,cm=0;當(dāng)a2a1a=100時,bi+1=1,bi+2=1,bi+3=0,cm=2;當(dāng)a2a1a=101時,bi+1=0,cm=0;當(dāng)a=0,前面有奇數(shù)個1時,bi+1=1,bi+2=0,cm=1; 當(dāng)a=0,前面有偶數(shù)個1時,bi+1=1,bi+2=1,bi+3=0,cm=2;當(dāng)末位有奇數(shù)個1時,bi+1=1,bi+2=0,cm=1;當(dāng)末位有偶數(shù)個1時,bi+1=1,bi+2=0,cm=0;故cm的最大值為2.
點(diǎn)評:對于新定義型問題,正確理解新定義傳遞的信息是解題的突破口.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將數(shù)列{an}中的所有項按第一行排3項,以下每一行比上一行多一項的規(guī)則排成如下數(shù)表:
記表中的第一列數(shù)a1,a4,a8,…,構(gòu)成數(shù)列{bn}.
(Ⅰ)設(shè)b8=am,求m的值;
(Ⅱ)若b1=1,對于任何n∈N*,都有bn>0,且(n+1)bn+12-nbn2+bn+1bn=0.求數(shù)列{bn}的通項公式;
(Ⅲ)對于(Ⅱ)中的數(shù)列{bn},若上表中每一行的數(shù)按從左到右的順序均構(gòu)成公比為q(q>0)的等比數(shù)列,且a66=
25
,求上表中第k(k∈N*)行所有項的和s(k).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將數(shù)列{an}  中的所有項按第一排三項,以下每一行比上一行多一項的規(guī)則排成如數(shù)表:記表中的第一列數(shù)a1,a4,a8,…構(gòu)成的數(shù)列為{bn},已知:
①在數(shù)列{bn}  中,b1=1,對于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的數(shù)按從左到右的順序均構(gòu)成公比為q(q>0)的等比數(shù)列;
a66=
2
5
.請解答以下問題:
(1)求數(shù)列{bn}  的通項公式;
(2)求上表中第k(k∈N*)行所有項的和S(k);
(3)若關(guān)于x的不等式S(k)+
1
k
1-x2
x
x∈[
1
1000
 , 
1
100
]
上有解,求正整數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將數(shù)列{an}中的所有項按第一排三項,以下每一行比上一行多一項的規(guī)則排成如下數(shù)表:記表中的第一列數(shù)a1,a4,a8,…構(gòu)成的數(shù)列為{bn},已知:
①在數(shù)列{bn}中,b1=1,對于任何n∈N*,都有(n+1)bn+1-nbn=0;
②表中每一行的數(shù)按從左到右的順序均構(gòu)成公比為q(q>0)的等比數(shù)列;
a1   a2   a3
a4   a5   a6   a7
a8   a9   a10  a11  a12

a66=
2
5
.請解答以下問題:
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)求上表中第k(k∈N*)行所有項的和S(k);
(Ⅲ)若關(guān)于x的不等式S(k)+
1
k
1-x2
x
x∈[
1
200
 , 
1
20
]
上有解,求正整數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正整數(shù)1,2,3,4,…,n2(n≥2)任意排成n行n列的數(shù)表.對于某一個數(shù)表,計算各行和各列中的任意兩個數(shù)a,b(a>b)的比值
a
b
,稱這些比值中的最小值為這個數(shù)表的“特征值”.
(1)當(dāng)n=2時,試寫出排成的各個數(shù)表中所有可能的不同“特征值”;
(2)若aij表示某個n行n列數(shù)表中第i行第j列的數(shù)(1≤i≤n,1≤j≤n),且滿足aij=
i+(j-i-1)n,i<j
i+(n-i+j-1)n,i≥j
請分別寫出n=3,4,5時數(shù)表的“特征值”,并由此歸納此類數(shù)表的“特征值”(不必證明);
(3)對于由正整數(shù)1,2,3,4,…,n2排成的n行n列的任意數(shù)表,若某行(或列)中,存在兩個數(shù)屬于集合{n2-n+1,n2-n+2,…,n2},記其“特征值”為λ,求證:λ≤
n+1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬題 題型:解答題

將數(shù)列{an}中的所有項按第一行排三項,以下每一行比上一行多一項的規(guī)則排成如下數(shù)表:
記表中的第一列數(shù)a1,a4,a8,…構(gòu)成的數(shù)列為{bn},已知:
(1)在數(shù)列{bn}中,b1=1,對于任何n∈N*,都有(n+1)bn+1-nbn=0;
(2)表中每一行的數(shù)按從左到右的順序均構(gòu)成公比為q(q>0)的等比數(shù)列;
(3),請解答以下問題:
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)求上表中第k(k∈N*)行所有項的和S(k);
(Ⅲ)若關(guān)于x的不等式上有解,求正整數(shù)k的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案