【題目】函數(shù)f(x)是R上的偶函數(shù),且當x>0時,函數(shù)的解析式為
(1)用定義證明f(x)在(0,+∞)上是減函數(shù);
(2)求當x<0時,函數(shù)的解析式.

【答案】
(1)證明:∵ ,任取x1,x2∈(0,+∞),且x1<x2;

則f(x1)﹣f(x2)=( ﹣1)﹣( ﹣1)= ;

∵0<x1<x2,∴x2﹣x1>0,x1x2>0;

∴f(x1)﹣f(x2)>0,即f(x1)>f(x2);

∴f(x)在(0,+∞)上是減函數(shù)


(2)解:當x<0時,﹣x>0,

∵x>0時, ,

∴f(﹣x)= ﹣1=﹣ ﹣1,

又∵f(x)是R上的偶函數(shù),

∴f(﹣x)=f(x)

∴f(x)=﹣ ﹣1;

即x<0時,f(x)=﹣ ﹣1


【解析】(1)用函數(shù)的單調(diào)性定義證明f(x)在(0,+∞)上是減函數(shù);(2)應(yīng)用偶函數(shù)的性質(zhì)f(﹣x)=f(x),與x>0時f(x)的解析式,可以求出x<0時f(x)的解析式.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法的相關(guān)知識可以得到問題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=loga(2x2+x)(a>0,a≠1)在區(qū)間(0, )內(nèi)恒有f(x)>0,則f(x)的單調(diào)遞增區(qū)間是(
A.(﹣∞,﹣
B.
C.
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣a是奇函數(shù)
(1)求實數(shù)a的值;
(2)判斷函數(shù)在R上的單調(diào)性并用函數(shù)單調(diào)性的定義證明;
(3)對任意的實數(shù)x,不等式f(x)<m﹣1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了對生產(chǎn)的一種新產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到以下數(shù)據(jù):

單價x(元/件)

60

62

64

66

68

70

銷量y(件)

91

84

81

75

70

67

I)畫出散點圖,并求關(guān)于的回歸方程;

II)已知該產(chǎn)品的成本是36/件,預(yù)計在今后的銷售中,銷量與單價仍然服從(I)中的關(guān)系,為使企業(yè)獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元(精確到元)?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)=(m﹣1)x2+2mx+3為偶函數(shù),則f(x)在區(qū)間(2,5)上是(
A.減函數(shù)
B.增函數(shù)
C.有增有減
D.增減性不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), 為自然對數(shù)的底數(shù).

(1)若函數(shù)的圖象在點處的切線方程為,求實數(shù), 的值;

(2)當時,若存在, ,使成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關(guān)?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)在[0,+∞)內(nèi)是增函數(shù),且f(3)=0,則關(guān)于x的不等式xf(x)≤0的解集為(
A.{x|﹣3≤x≤0或x≥3}
B.{x|x≤﹣3或﹣3≤x≤0}
C.{x|﹣3≤x≤3}
D.{x|x≤﹣3或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個零點, ,則下面說法正確的是( )

A. B. C. D. 有極小值點,且

查看答案和解析>>

同步練習(xí)冊答案