12.在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是①③⑤(寫出所有正確命題的編號)
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點;
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點;
③如果直線l經(jīng)過兩個不同的整點,則直線l必經(jīng)過無窮多個整點;
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù);
⑤存在恰經(jīng)過一個整點的直線.

分析 ①舉一例子即可說明本命題是真命題;
②舉一反例即可說明本命題是假命題;
③假設(shè)直線l過兩個不同的整點,設(shè)直線l為y=kx,把兩整點的坐標(biāo)代入直線l的方程,兩式相減得到兩整點的橫縱坐標(biāo)之差的那個點也為整點且在直線l上,利用同樣的方法,得到直線l經(jīng)過無窮多個整點,得到本命題為真命題;
④當(dāng)k,b都為有理數(shù)時,y=kx+b可能不經(jīng)過整點,例如k=$\frac{1}{2}$,b=$\frac{1}{3}$;
⑤舉一例子即可得到本命題為真命題.

解答 解:①令y=x+$\frac{1}{2}$,既不與坐標(biāo)軸平行又不經(jīng)過任何整點,所以本命題正確;
②若k=$\sqrt{2}$,b=$\sqrt{2}$,則直線y=$\sqrt{2}$x+$\sqrt{2}$經(jīng)過(-1,0),所以本命題錯誤;
設(shè)y=kx為過原點的直線,若此直線l過不同的整點(x1,y1)和(x2,y2),
把兩點代入直線l方程得:y1=kx1,y2=kx2,
兩式相減得:y1-y2=k(x1-x2),
則(x1-x2,y1-y2)也在直線y=kx上且為整點,
通過這種方法得到直線l經(jīng)過無窮多個整點,則③正確;
④當(dāng)k,b都為有理數(shù)時,y=kx+b可能不經(jīng)過整點,例如k=$\frac{1}{2}$,b=$\frac{1}{3}$,故④不正確;
⑤令直線y=$\sqrt{2}$x恰經(jīng)過整點(0,0),所以本命題正確.
綜上,命題正確的序號有:①③⑤.
故答案為:①③⑤.

點評 此題考查學(xué)生會利用舉反例的方法說明一個命題為假命題,要說明一個命題是真命題必須經(jīng)過嚴(yán)格的說理證明,以及考查學(xué)生對題中新定義的理解能力,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=log2(x2-4)的定義域為(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,設(shè)集合A,B為全集U的兩個子集,則A∪B={1,2,3,4,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在鈍角△ABC中角A,B,C的對邊分別是a,b,c,若a=2,b=3,則最大邊c的取值范圍是($\sqrt{13}$,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a,b,c分別是△ABC中角A,B,C的對邊,且csinB=$\sqrt{3}$bcosC.
(1)求角C的大;
(2)若c=3,sinA=2sinB,求△ABC的面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.點O在△ABC內(nèi)部,且滿足4$\overrightarrow{OA}$+5$\overrightarrow{OB}$+6$\overrightarrow{OC}$=$\overrightarrow{0}$,則△ABC的面積與△ABO、△ACO面積之和的比為15:11 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過點(3,-6)且在兩坐標(biāo)軸上的截距相等的直線的方程是( 。
A.2x+y=0B.x+y+3=0C.x-y+3=0D.x+y+3=0或2x+y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知定義在[-2,2]上的函數(shù)f(x),當(dāng)x∈[-2,2]都滿足f(-x)=f(x),且對于任意的a,b∈[0,2],都有$\frac{f(a)-f(b)}{a-b}$<0(a≠b),若f(1-m)<f(m),則實數(shù)m的取值范圍為-1≤m<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.動圓C經(jīng)過定點F(0,2)且與直線y+2=0相切,則動圓的圓心C的軌跡方程是x2=8y.

查看答案和解析>>

同步練習(xí)冊答案