A. | 3$\root{3}{4}$ | B. | $\root{3}{4}$ | C. | 4$\root{3}{3}$ | D. | $\root{3}{3}$ |
分析 變形利用基本不等式的性質(zhì)即可得出.
解答 解:∵正數(shù)x,y滿足xy2=4,∴x=$\frac{4}{{y}^{2}}$.
則x+2y=$\frac{4}{{y}^{2}}$+2y=$\frac{4}{{y}^{2}}$+y+y$≥3\root{3}{\frac{4}{{y}^{2}}•y•y}$=$3\root{3}{4}$,當(dāng)且僅當(dāng)y=$\sqrt{2}$,x=2時(shí)取等號(hào).
∴x+2y的最小值是$3\root{3}{4}$,
故選:A.
點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}+1}}{2}$ | D. | $\frac{{\sqrt{5}+1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 截距相等的直線都可以用方程$\frac{x}{a}+\frac{y}{a}=1$表示 | |
B. | 方程x+my-2=0(m∈R)不能表示平行y軸的直線 | |
C. | 經(jīng)過(guò)點(diǎn)P(1,1),傾斜角為θ的直線方程為y-1=tanθ(x-1) | |
D. | 經(jīng)過(guò)兩點(diǎn)P1(x1,y1),P2(x2,y2)(x1≠x2)的直線方程為$y-{y_1}=\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}(x-{x_1})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直線BE與直線CF共面 | B. | 直線BE與直線AF是異面直線 | ||
C. | 平面BCE⊥平面PAD | D. | 面PAD與面PBC的交線與BC平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {4,8} | B. | {0,2,4,10} | C. | {0,2,10} | D. | {0,2,6,10} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com