8.在下列A、B、C、D四個圖象中,大致為函數(shù)y=2|x|-x2(x∈R)的圖象的是( 。
A.B.C.D.

分析 分析函數(shù)的奇偶性,可排除B,D;由函數(shù)圖象過(0,1)點,可排除C;進而得到答案.

解答 解:函數(shù)y=f(x)=2|x|-x2滿足f(-x)=f(x),
即函數(shù)為偶函數(shù),圖象關(guān)于y軸對稱,
故排除B,D;
當x=0時,函數(shù)圖象過(0,1)點,
故排除C;
故選:A

點評 本題考查的知識點是函數(shù)的圖象,對于超越函數(shù)圖象的判斷,多采用排除法進行解答.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知F1(-3,0),F(xiàn)2(3,0)動點M滿足|MF1|+|MF2|=10,則動點M的軌跡方程$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知直線y=x+1與曲線y=alnx相切,若a∈(n,n+1)(n∈N*),則n=( 。▍⒖紨(shù)據(jù):ln2≈0.7,ln3≈1.1)
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知全集U=R,集合A={x|x2-2x≤0},B={x|y=lg(x-1)},則集合A∩(∁UB)=( 。
A.{x|x<0,或x>2}B.{x|0<x<2}C.{x|0≤x<1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,∠ABC=$\frac{π}{2}$,D是棱AC的中點,且AB=BC=BB1=4.
(Ⅰ)求證:AB1∥平面BC1D;    
(Ⅱ)求異面直線AB1與BC1所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.函數(shù)f(x)=sin(ωx+ϕ)$(ω>0,0<ϕ<\frac{π}{2})$,f(0)=$\frac{{\sqrt{2}}}{2}$,且對任意${x_1},{x_2}∈(\frac{π}{2},π)$均滿足$\frac{{{x_1}-{x_2}}}{{f({x_1})-f({x_2})}}<0({x_1}≠{x_2})$,則ω的取值范圍是$\frac{1}{2}$≤ω≤$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知$f(x)=3sin({ωx+\frac{π}{3}})$(ω>0),$f({\frac{π}{6}})=f({\frac{π}{3}})$,且f(x)在區(qū)間$({\frac{π}{6},\frac{π}{3}})$上有最小值,無最大值,則ω=$\frac{14}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖所示,在△ABC中,M在BC上,N在AM上,CM=CN,且$\frac{AM}{AN}$=$\frac{BM}{CN}$,下列結(jié)論中正確的是( 。
A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知正四棱柱ABCD-A1B1C1D1中,二面角A-A1C-D1的余弦值為$-\frac{{\sqrt{10}}}{5}$.
(1)求證:BD⊥A1C1
(2)在線段CC1上是否存在點P,使得平面A1CD1⊥平面PBD,若存在,求出$\frac{CP}{{P{C_1}}}$的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案