已知、是橢圓的左、右焦點(diǎn),且離心率,點(diǎn)為橢圓上的一個(gè)動點(diǎn),的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個(gè)點(diǎn),滿足向量與共線,與共
線,且,求的取值范圍.
(1) ;(2)
【解析】
試題分析:本小題主要通過對直線與圓錐曲線中橢圓的綜合應(yīng)用的考查,具體涉及到橢圓方程的求法、直線與圓錐曲線的相關(guān)知識與圓錐曲線的綜合知識,提示考生對圓錐曲線的綜合題加以重視,本題主要考查考生的推理論證能力,運(yùn)算求解能力、化歸與轉(zhuǎn)化以及數(shù)形結(jié)合的數(shù)學(xué)思想.(1)利用方程思想和幾何性質(zhì),得到含有的兩個(gè)等量關(guān)系,進(jìn)而利用待定系數(shù)法求解橢圓方程;(2)通過直線與方程聯(lián)立,借助韋達(dá)定理和弦長公式將進(jìn)行表示為含有的函數(shù)關(guān)系式,利用換元法和二次函數(shù)求值域的思路尋求范圍.
試題解析:(1)由幾何性質(zhì)可知:當(dāng)內(nèi)切圓面積取最大值時(shí),
即取最大值,且.
由得
又為定值,,
綜上得;
又由,可得,即,
經(jīng)計(jì)算得,,,
故橢圓方程為. (5分)
(2) ①當(dāng)直線與中有一條直線垂直于軸時(shí),.
②當(dāng)直線斜率存在但不為0時(shí),設(shè)的方程為:,由 消去可得,代入弦長公式得: ,
同理由消去可得,
代入弦長公式得:,
所以
令,則,所以,
由①②可知,的取值范圍是. (12分)
考點(diǎn):(1)橢圓方程;(2)直線與橢圓的位置關(guān)系;(3)函數(shù)的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年青島市質(zhì)檢二文)(14分) 已知、是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足;
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓的右焦點(diǎn)作直線交橢圓于、兩點(diǎn),交軸于點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年青島市質(zhì)檢二理) (14分) 已知、是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段與軸的交點(diǎn)滿足;
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)⊙是以為直徑的圓,直線(為整數(shù))與⊙相切,并與橢圓交
于不同的兩點(diǎn)、,當(dāng),且滿足時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省長春市畢業(yè)班第四次調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知、是橢圓的左、右焦點(diǎn),且離心率,點(diǎn)為橢圓上的一個(gè)動點(diǎn),的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個(gè)點(diǎn),滿足向量與共線,與共
線,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高二上學(xué)期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
已知、是橢圓的左、右焦點(diǎn),弦過,則的周長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com