4.一個空間幾何體的三視圖如圖,其中主視圖是腰長為3的等腰三角形,俯視圖是邊長分別為1,2的矩形,則該幾何體的體積等于( 。
A.2B.$4\sqrt{2}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{4\sqrt{2}}}{3}$

分析 由三視圖易得這個幾何體是一個四棱錐,四棱錐的底面是一個邊長是1、2的長方形,頂點在底面的射影是長邊的中點,短側(cè)棱長為:3,求出棱錐的高,即可求解四棱錐的體積.

解答 解:由三視圖知,這是一個四棱錐,
四棱錐的底面是一個邊長是1、2的長方形,頂點在底面的射影是長邊的中點,短側(cè)棱長為3,
棱錐的高:$\sqrt{{3}^{2}-1}$=2$\sqrt{2}$,
∴四棱錐的體積是:$\frac{1}{3}$×1×2×2$\sqrt{2}$=$\frac{4\sqrt{2}}{3}$.
故選:D.

點評 本題考查由三視圖求幾何體的體積,考查由三視圖還原直觀圖形,考查空間想象能力,是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N).設(shè)bn=$\frac{1}{{{a_{n+1}}}}$+$\frac{1}{{{a_{n+2}}}}$+$\frac{1}{{{a_{n+3}}}}$+…+$\frac{1}{{{a_{2n}}}}$,若對任意的正整數(shù)n,當(dāng)m∈[-1,1]時,不等式t2-2mt+$\frac{1}{6}$>bn恒成立,則實數(shù)t的取值范圍是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某校高三學(xué)生有3000名,在一次模擬考試中數(shù)學(xué)成績X服從正態(tài)分布N(100,σ2),已知P(80<X<120)=0.6,若學(xué)校按分層抽樣的方式從中抽取50份試卷進行分析研究,則應(yīng)從成績不低于120分的試卷中抽(  )
A.10份B.20份C.30份D.40份

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)a,b是正數(shù),且a≠1,b≠1,求證:$\frac{{a}^{5}-1}{{a}^{4}-1}$•$\frac{^{5}-1}{^{4}-1}$>$\frac{25}{64}$(a+1)(b+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若數(shù)列{an}滿足:a1=1,an+1+an=4n.
(Ⅰ)求{an}的通項公式;
(Ⅱ)記{an}的前n項和為Sn,證明$\sum_{i=1}^{n}$$\frac{1}{9{S}_{i}-1}$<$\frac{5}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線l:$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù))與圓C:$\left\{\begin{array}{l}x=2+2cosθ\\ y=1+2sinθ\end{array}\right.$(θ為參數(shù))的位置關(guān)系是(  )
A.相離B.相切C.相交且過圓心D.相交但不過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用數(shù)學(xué)歸納法證明不等式“1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{2}^{n}-1}$<n(n∈N*,n≥2)”時,由n=k(k≥2)不等式成立,推證n=k+1時,左邊應(yīng)增加的項數(shù)是( 。
A.2k-1B.2k-1C.2kD.2k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出以下命題:
①命題“若am2<bm2”,則“a<b”的逆命題是真命題;
②命題“p或q”為真命題,則命題p和命題q均為真命題;
③已知x∈R,則“x>1”是“x>2”的充分不必要條件;
④命題“?x∈R,x2-x>0”的否定是:“?x∈R,x2-x≤0”
其中真命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若m=$\sqrt{3}$+$\sqrt{5}$,n=$\sqrt{2}$+$\sqrt{6}$,則m、n的大小關(guān)系是( 。
A.m>nB.m<nC.m=nD.m≤n

查看答案和解析>>

同步練習(xí)冊答案