設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.
【答案】分析:(1)已知曲線上的點(diǎn),并且知道過(guò)此點(diǎn)的切線方程,容易求出斜率,又知點(diǎn)(2,f(2))在曲線上,利用方程聯(lián)立解出a,b
(2)可以設(shè)P(x,y)為曲線上任一點(diǎn),得到切線方程,再利用切線方程分別與直線x=0和直線y=x聯(lián)立,得到交點(diǎn)坐標(biāo),接著利用三角形面積公式即可.
解答:解析:(1)方程7x-4y-12=0可化為,當(dāng)x=2時(shí),
,于是,解得,故

(2)設(shè)P(x,y)為曲線上任一點(diǎn),由知曲線在點(diǎn)P(x,y)處的切線方程為,即
令x=0,得,從而得切線與直線x=0的交點(diǎn)坐標(biāo)為
令y=x,得y=x=2x,從而得切線與直線y=x的交點(diǎn)坐標(biāo)為(2x,2x);
所以點(diǎn)P(x,y)處的切線與直線x=0,y=x所圍成的三角形面積為
故曲線y=f(x)上任一點(diǎn)處的切線與直線x=0,y=x所圍成的三角形面積為定值,此定值為6.
點(diǎn)評(píng):高考考點(diǎn):導(dǎo)數(shù)及直線方程的相關(guān)知識(shí)
易錯(cuò)點(diǎn):運(yùn)算量大,不仔細(xì)而出錯(cuò).
備考提示:運(yùn)算能力一直是高考考查的能力之一,近年來(lái),對(duì)運(yùn)算能力的要求降低了,但對(duì)準(zhǔn)確率的要求提高了.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:《第1章 導(dǎo)數(shù)及其應(yīng)用》2013年單元測(cè)試卷(2)(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年四川省南充市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)第一輪復(fù)習(xí)鞏固與練習(xí):導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)(文科)一輪復(fù)習(xí)講義:2.9 導(dǎo)數(shù)的概念及運(yùn)算(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案