(2008•閘北區(qū)一模)復(fù)數(shù)
3
2
i+
1
1-i
的虛部是
2
2
分析:根據(jù)所給的復(fù)數(shù)進(jìn)行復(fù)數(shù)的除法運算,分子和分母同乘以分母的共軛復(fù)數(shù),合并同類型得到最簡形式,看出復(fù)數(shù)的虛部.
解答:解:復(fù)數(shù)
3
2
i+
1
1-i
=
3
2
i+
1+i
(1-i)(1+i)
=
3
2
i+
1+i
2
=
1
2
+2i
∴復(fù)數(shù)的虛部是2,
故答案為:2
點評:本題考查復(fù)數(shù)的代數(shù)形式的乘除運算和復(fù)數(shù)的概念,本題解題的關(guān)鍵是整理出正確的最簡形式,在看出所要求的實部和虛部,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)一模)已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
23
an+n-4,bn=(-1)n(an
-3n+21),其中λ為實數(shù),n為正整數(shù).Sn為數(shù)列{bn}的前n項和.
(1)對任意實數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)對于給定的實數(shù)λ,試求數(shù)列{bn}的通項公式,并求Sn
(3)設(shè)0<a<b(a,b為給定的實常數(shù)),是否存在實數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)一模)在△ABC中,內(nèi)角A,B,C所對的邊長分別是a,b,c.
(Ⅰ)若c=2,C=
π
3
,且△ABC的面積S=
3
,求a,b的值;
(Ⅱ)若sinC+sin(B-A)=sin2A,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)一模)若f(x+2)=
tanx,x≥0
log2(-x),x<0
,則f(
π
4
+2)•f(-2)
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)一模)如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD,E、F分別是線段PA、CD的中點.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求EF和平面ABCD所成的角α;
(Ⅲ)求異面直線EF與BD所成的角β.

查看答案和解析>>

同步練習(xí)冊答案