已知函數(shù)f(x)=
3
sinxcosx-3sin2x+
3
2

(1)求函數(shù)f(x)的最小正周期;
(2)已知△ABC中,角A,B,C所對的邊長分別為a,b,c,若f(A)=0,a=
3
,b=2,求△ABC的面積S.
考點:二倍角的正弦,兩角和與差的正弦函數(shù),二倍角的余弦,三角函數(shù)的周期性及其求法,正弦定理
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)利用倍角公式、兩角和差的正弦公式、正弦函數(shù)周期公式即可得出;
(2)利用f(A)=0可得A,再利用正弦定理可得C,利用三角形的面積計算公式S=
1
2
absinC
即可得出.
解答: 解:(1)f(x)=
2
3
sinxcosx
2
+
3(1-2sin2x)
2

=
3
2
sin2x+
3
2
cos2x
=
3
sin(2x+
π
3
)

∴f(x)的最小正周期為π,
(2)∵f(A)=0,∴
3
sin(2A+
π
3
)=0

由A∈(0,π),
解得A=
π
3
A=
5
6
π
,
又a<b,故A=
π
3

a
sinA
=
b
sinB
,
得sinB=1,則B=
π
2
,C=
π
6
,
S=
1
2
absinC=
3
2
點評:本題綜合考查了倍角公式、兩角和差的正弦公式、正弦函數(shù)周期公式、正弦定理、三角形的面積計算公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,且滿足Sn=2-an,n∈N+,數(shù)列{bn}滿足b1=1,且bn+1=bn+an
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn=n(3-bn),數(shù)列cn=n(3-bn)的前n項和為Tn,求證:Tn<8;
(3)設(shè)數(shù)列{dn}滿足dn=4n+(-1)n-1•λ•
1
an
(n∈N+),若數(shù)列{dn}是遞增數(shù)列,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-4)(x-a)(a∈R),且滿足f′(-1)=0;
(1)求a的值;
(2)求函數(shù)f(x)在區(qū)間[-2,2]上的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個袋子內(nèi)裝有除顏色不同外其余完全相同的3個白球和2個黑球,從中不放回地任取兩次,每次取一球,在第一次取到的是白球的條件下,第二次也取到白球的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

重慶市某知名中學(xué)高三年級甲班班主任近期對班上每位同學(xué)的成績作相關(guān)分析時,得到石周卓婷同學(xué)的某些成績數(shù)據(jù)如下:
第一次考試 第二次考試 第三次考試 第四次考試
數(shù)學(xué)總分 118 119 121 122
總分年級排名 133 127 121 119
(1)求總分年級名次對數(shù)學(xué)總分的線性回歸方程y=bx+a;(必要時用分數(shù)表示)
(2)若石周卓婷同學(xué)想在下次的測試時考入前100名,預(yù)測該同學(xué)下次測試的數(shù)學(xué)成績至少應(yīng)考多少分(取整數(shù),可四舍五入).附:線性回歸方程y=bx+a中,b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax(a∈R)在點P(0,f(0))處切線為l.
(Ⅰ)若切線l的斜率為2,求f(x);
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)證明:無論a取什么實數(shù),函數(shù)f(x)的圖象總在直線l的上方(點P除外).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)求不等式的解集:x2+4x-5>0
(Ⅱ)已知三角形△ABC的三個頂點是A(4,0),B(6,7),C(0,8),求BC邊上的高所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=3,an=-an-1-4n(N≥2,n∈N*),數(shù)列{an}的前n項和Sn
(1)證明:數(shù)列{an+2n+1}是等比數(shù)列,并求{an}的通項公式;
(2)求Sn
(3)設(shè)bn=
|Sn|
n
•(
9
10
n,求b2n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某汽車運輸公司,購買了一批豪華大客車投入客運,據(jù)市場分析,每輛客車營運的總利潤y(萬元)與營運年數(shù)x(x∈N*)的二次函數(shù)關(guān)系如圖,為了使每輛客車營運的年平均利潤最大,則每輛客車應(yīng)營運
 
年.

查看答案和解析>>

同步練習(xí)冊答案