如圖1,某學(xué)校田徑場(chǎng)上有一旗桿OP,為了測(cè)量它的高度,在地面上選一基線(xiàn)AB,設(shè)其長(zhǎng)度為d,在A點(diǎn)處測(cè)得P點(diǎn)的仰角為α,在B點(diǎn)處測(cè)得P點(diǎn)的仰角為β.
(1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗桿的高度h;
(2)經(jīng)分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)將基線(xiàn)AB調(diào)整到線(xiàn)段AO上(如圖2),α與β之差盡量大時(shí),可以提高測(cè)量精確度,設(shè)調(diào)整后AB的距離為d,tanβ=
4d
,旗桿的實(shí)際高度為25,試問(wèn)d為何值時(shí),β-α最大?
分析:(1)利用余弦定理,可得AB2=OA2+OB2-2OA•OBcos∠AOB,即可求旗桿的高度h;
(2)計(jì)算tan(β-α),利用基本不等式,結(jié)合正切函數(shù)的單調(diào)性,即可得到結(jié)論.
解答:解:(1)在Rt△POA中,OA=
3
h,在Rt△POB中,OB=h,
在Rt△AOB中,d2=(
3
h)2+h2-2•
3
h•hcos30°,其中:d=20,得:h=20,
故旗桿的高度為20
(2)∵tanα=
h
d+
dh
4
,tanβ=
4
d

∴tan(β-α)=
4
d
-
4h
d(h+4)
1+
16h
d2(h+4)
=
16d
d2(h+4)+16h
=
16
d(h+4)+
16h
d
16
2
16h(h+4)
=
2
h(h+4)
=
2
5
29

當(dāng)且僅當(dāng)d(h+4)=
16h
d
即d=
20
29
時(shí)“=”成立
故當(dāng)d=
20
29
時(shí),tan(β-α)最大,
∵0<α<β<
π
2
,∴0<β-α<
π
2

∴當(dāng)d=
20
29
時(shí),β-α最大
點(diǎn)評(píng):本題考查余弦定理的運(yùn)用,考查差角的正切公式,考查正切函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1是某高三學(xué)生進(jìn)入高中三年來(lái)的數(shù)學(xué)考試成績(jī)莖葉圖,第1次到12次的考試成績(jī)依次記為A1,A2…A12.如圖2是統(tǒng)計(jì)莖葉圖中成績(jī)?cè)谝欢ǚ秶鷥?nèi)考試次數(shù)的一個(gè)算法流程圖.那么算法流程圖輸出的結(jié)果是
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,某學(xué)校田徑場(chǎng)上有一旗桿OP,為了測(cè)量它的高度,在地面上選一基線(xiàn)AB,設(shè)其長(zhǎng)度為d,在A點(diǎn)處測(cè)得P點(diǎn)的仰角為α,在B點(diǎn)處測(cè)得P點(diǎn)的仰角為β.
(1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗桿的高度h;
(2)經(jīng)分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)將基線(xiàn)AB調(diào)整到線(xiàn)段AO上(如圖2),α與β之差盡量大時(shí),可以提高測(cè)量精確度,設(shè)調(diào)整后AB的距離為d,tanβ=數(shù)學(xué)公式,旗桿的實(shí)際高度為25,試問(wèn)d為何值時(shí),β-α最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省常德市芷蘭實(shí)驗(yàn)學(xué)校高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖1,某學(xué)校田徑場(chǎng)上有一旗桿OP,為了測(cè)量它的高度,在地面上選一基線(xiàn)AB,設(shè)其長(zhǎng)度為d,在A點(diǎn)處測(cè)得P點(diǎn)的仰角為α,在B點(diǎn)處測(cè)得P點(diǎn)的仰角為β.
(1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗桿的高度h;
(2)經(jīng)分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)將基線(xiàn)AB調(diào)整到線(xiàn)段AO上(如圖2),α與β之差盡量大時(shí),可以提高測(cè)量精確度,設(shè)調(diào)整后AB的距離為d,tanβ=,旗桿的實(shí)際高度為25,試問(wèn)d為何值時(shí),β-α最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省常德市芷蘭實(shí)驗(yàn)學(xué)校高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖1,某學(xué)校田徑場(chǎng)上有一旗桿OP,為了測(cè)量它的高度,在地面上選一基線(xiàn)AB,設(shè)其長(zhǎng)度為d,在A點(diǎn)處測(cè)得P點(diǎn)的仰角為α,在B點(diǎn)處測(cè)得P點(diǎn)的仰角為β.
(1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗桿的高度h;
(2)經(jīng)分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)將基線(xiàn)AB調(diào)整到線(xiàn)段AO上(如圖2),α與β之差盡量大時(shí),可以提高測(cè)量精確度,設(shè)調(diào)整后AB的距離為d,tanβ=,旗桿的實(shí)際高度為25,試問(wèn)d為何值時(shí),β-α最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案