已知O為△ABC所在平面內一點,滿足|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|2=|
OC
|2+|
AB
|2
,則點O是△ABC的( 。
A.外心B.內心C.垂心D.重心
OA
=
a
OB
=
b
,
OC
=
c
,則
BC
=
c
-
b
CA
=
a
-
c
,
AB
=
b
a

由題可知,|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|2=|
OC
|2+|
AB
|2
,
∴|
a
|2+|
c
-
b
|2=|
b
|2+|
a
-
c
|2,化簡可得
c
b
=
a
c
,即(
b
-
a
)•
c
=0,
OC
AB
=0
,∴
AB
OC
,即OC⊥AB.
同理可得OB⊥AC,OA⊥BC.
∴O是△ABC的垂心.
故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知O為△ABC所在平面內一點,滿足|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|2=|
OC
|2+|
AB
|2
,則點O是△ABC的( 。
A、外心B、內心C、垂心D、重心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O為△ABC所在平面外一點,且
OA
=
a
OB
=
b
,
OC
=
c
,OA,OB,OC兩兩互相垂直,H為△ABC的垂心,試用
a
,
b
,
c
表示
OH

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O為△ABC所在平面內的一點,且滿足(
OB
-
OC
)•(
OB
+
OC
)•(
OB
+
OC
-2
OA
)=0,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O為△ABC所在平面內一點,滿足|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|2=|
OC
|2+|
AB
|2,則點O是△ABC的
 
 心.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年蘇教版高中數(shù)學必修4 2.5向量的應用練習卷(解析版) 題型:選擇題

已知O為△ABC所在平面內一點,滿足

,則點O是△ABC的(    )

A.外心                   B.內心                  C.垂心              D.重心

 

查看答案和解析>>

同步練習冊答案