【題目】如圖,在直三棱柱中,是上的一點(diǎn),,且.
(1)求證:平面;
(2)若,求點(diǎn)到平面的距離.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)連接A1B交AB1于E,連接DE,根據(jù)中位線定理即可得出DE∥A1C,故而A1C∥平面AB1D1;
(2)過(guò)B作BF⊥B1D,則可證BF⊥平面AB1D,于是點(diǎn)A1到平面AB1D的距離等于C到平面AB1D的距離,等于B到平面AB1D的距離BF.
(1)如圖,
連接,交于點(diǎn),再連接,
據(jù)直棱柱性質(zhì)知,四邊形為平行四邊形,為的中點(diǎn),
∵當(dāng)時(shí),,∴是的中點(diǎn),∴,
又平面,平面,∴平面.
(2)如圖,在平面中,過(guò)點(diǎn)作,垂足為,
∵是中點(diǎn),
∴點(diǎn)到平面與點(diǎn)到平面距離相等,
∵平面,∴點(diǎn)到平面的距離等于點(diǎn)到平面的距離,
∴長(zhǎng)為所求,在中,,,,
∴,∴點(diǎn)到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C; =1(a>b>c)的左、右焦點(diǎn)分別為F1(﹣c,0)、F2(c,0),過(guò)原點(diǎn)O的直線(與x軸不重合)與橢圓C相交于D、Q兩點(diǎn),且|DF1|+|QF1|=4,P為橢圓C上的動(dòng)點(diǎn),△PF1F2的面積的最大值為 .
(1)求橢圓C的離心率;
(2)若A、B是橢圓C上關(guān)于x軸對(duì)稱(chēng)的任意兩點(diǎn),設(shè)點(diǎn)N(﹣4,0),連接NA與橢圓C相交于點(diǎn)E,直線BE與x軸相交于點(diǎn)M,試求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列滿足,,.
求數(shù)列的通項(xiàng)公式;
設(shè),求的前n項(xiàng)和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log2(|x+1|+|x﹣1|﹣a)
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的定義域;
(2)若不等式f(x)≥2的解集為R,求實(shí)數(shù)a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),,
.
(1)求證:;
(2)若平面與平面所成的銳二面角的大小為,求線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線過(guò)點(diǎn)P且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線滿足下列條件:①△AOB的周長(zhǎng)為12;②△AOB的面積為6.若存在,求出方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,E、F分別是、CD的中點(diǎn),(1)證明: ;(2)求異面直線與所成的角;(3)證明:平面平面。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且過(guò)點(diǎn)P。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知斜率為1的直線l過(guò)橢圓的右焦點(diǎn)F交橢圓于A.B兩點(diǎn),求弦AB的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從裝有兩個(gè)紅球和兩個(gè)黑球的口袋內(nèi)任取兩個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是( )
A. “至少有一個(gè)黑球”與“都是紅球”
B. “至少有一個(gè)黑球”與“至少有一個(gè)紅球”
C. “至少有一個(gè)黑球”與“都是黑球”
D. “恰有一個(gè)黑球”與“恰有兩個(gè)黑球”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com