分析 (1)當(dāng)k=1時(shí),Sn=an+n2-n,而an=Sn-Sn-1(n≥2),可求得Sn=n2+n,從而可求得數(shù)列{an}的通項(xiàng)公式;
(2)根據(jù)數(shù)列的遞推公式(k-1)an=kan-1-2n+2,a1=S1=ka1,分類求出k的值,再根據(jù)等比數(shù)列和等差數(shù)列的求和公式計(jì)算即可.
解答 解:(1)當(dāng)k=1時(shí),Sn=an+n2-n,
∴Sn-1=n2-n(n≥2),
∴Sn=(n+1)2-(n+1)=n2+n(n≥1)
∴當(dāng)n=1時(shí),a1=S1=2;
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,
所以數(shù)列{an}的通項(xiàng)公式為an=2n(n∈N*).
(2)當(dāng)n≥2時(shí),an=Sn-Sn-1
=kan-kan-1+2n-2,
∴(k-1)an=kan-1-2n+2,a1=S1=ka1,
若k=1,則an-2n-1=-1,
從而{an-2n-1}為公比為1的等比數(shù)列,不合題意;
若k≠1,則a1=0,a2=$\frac{2}{1-k}$,a3=$\frac{4-6k}{(1-k)^{2}}$,a1-3=-3,a2-5=$\frac{5k-3}{1-k}$,a3-7=$\frac{-7{k}^{2}+8k-3}{(k-1)^{2}}$,
由題意得,(a2-5)2=(a1-3)(a3-7)≠0,
∴k=0或k=$\frac{3}{2}$,
當(dāng)k=0時(shí),Sn=n2-n,an=2n-2,an-2n-1=-3,不合題意;
當(dāng)k=$\frac{3}{2}$時(shí),an=3an-1-4n+4,從而an-2n-1=3[an-1-2(n-1)-1],
∵a1-2×1-1=-3≠0,an-2n-1≠0,{an-2n-1}為公比為3的等比數(shù)列,
∴an-2n-1=-3n,
∴an=2n-3n+1,
∴Sn=n2+2n-$\frac{{3}^{n+1}}{2}$+$\frac{3}{2}$.
點(diǎn)評(píng) 本題考查等差數(shù)列的概念,考查數(shù)列的求和,求得k的值是難點(diǎn),也是關(guān)鍵,突出考查分類討論思想與化歸思想的應(yīng)用,考查類比推理與運(yùn)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一或第三象限 | B. | 第二或第四象限 | C. | 第一或第四象限 | D. | 第三或第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({\sqrt{5},\frac{{\sqrt{61}}}{2}})$ | B. | $({\sqrt{5},5})$ | C. | $({5,\frac{61}{4}})$ | D. | (5,25) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{{3\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com