【題目】已知函數(shù)fx)=lg(ax-bx)(a>1>b>0).

(Ⅰ)求fx)的定義域;

(Ⅱ)當(dāng)x∈(1,+∞)時(shí),fx)的值域?yàn)椋?/span>0,+∞),且f(2)=lg2,求實(shí)數(shù)a、b的值.

【答案】(Ⅰ)(0,+∞)(Ⅱ)a=,b=

【解析】

(Ⅰ)由axbx>0,(a>1>b>0)得,由此求得fx)的定義域;

(Ⅱ)令gx)=axbx,可得x(1,+∞)時(shí),gx)>1.由g(1)=1,可得ab=1 ①,又f(2)=lg2,故a2b2=2 ②,由①②求得ab的值.

解:()由ax-bx>0,得axbx

,

a>1>b>0,∴,則x>0.

fx)的定義域?yàn)椋?/span>0,+∞);

(Ⅱ)令gx)=ax-bx,

a>1>b>0,∴gx)在( 0,+∞)上為增函數(shù).

由當(dāng)x∈(1,+∞)時(shí),fx)的值域?yàn)椋?/span>0,+∞),可得x∈(1,+∞)時(shí),gx)>1,

g(1)=1,可得a-b=1 ①,

f(2)=lg2,∴a2-b2=2 ②,

聯(lián)立①②得:a=b=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>R的奇函數(shù)fx),當(dāng)x>0時(shí),fx)=ax2+bx+8(0<a<4),點(diǎn)A(2,0)在函數(shù)fx)的圖象上,且關(guān)于x的方程fx)+1=0有兩個(gè)相等的實(shí)根.

(1)求函數(shù)fx)解析式;

(2)若x∈[t,t+2](t>0)時(shí),函數(shù)fx)有最小值1,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,記A為此幾何體所有棱的長度構(gòu)成的集合,則(

A.3∈A
B.5∈A
C.2 ∈A
D.4 ∈A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的值域;

(2)若時(shí),函數(shù)的最小值為,求的值和函數(shù) 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是兩條不同的直線, 是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,則 ②若,則

③若,則 ④若,則

其中正確命題的序號(hào)是( )

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)中,直線的參數(shù)方程為為參數(shù)),P、Q分別為直線與x軸、y軸的交點(diǎn),線段PQ的中點(diǎn)為M.

)求直線的直角坐標(biāo)方程;

)以坐標(biāo)原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo)和直線OM的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半這條直線被后人稱之為三角形的歐拉線的頂點(diǎn),且的歐拉線的方程為,則頂點(diǎn)C的坐標(biāo)為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=x2-x+m,且f(log2a)=m,log2fa)=2,(a≠1).

(1)求am的值;

(2)求f(log2x)的最小值及對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)是單調(diào)減函數(shù),且為偶函數(shù).

(1)求的解析式;

(2)討論的奇偶性,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案