(2012•北海一模)函數(shù)f(x)=x3-2x2+2,在點(diǎn)(1,f(1))處的切線方程為(  )
分析:先求函數(shù)的導(dǎo)函數(shù),求出在x=1處的導(dǎo)數(shù),從而求出切線的斜率,最后利用點(diǎn)斜式求出切線方程即可.
解答:解:因?yàn)閒'(x)=3x2-4x,
所以切線的斜率為f'(1)=3-4=-1
f(1)=1-2+2=1即切點(diǎn)為(1,1)
所以切線方程y-1=(-1)×(x-1),
即x+y-2=0.
故選A.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,注意在某點(diǎn)與過(guò)某點(diǎn)的區(qū)別,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北海一模)定義一種運(yùn)算(a,b)*(c,d)=ad-bc,若函數(shù)f(x)=(1,log3x)*(tan
13π
4
,(
1
5
)x)
,x0是方程f(x)=0的解,且0<x1<x0,則f(x1)的值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北海一模)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(I)求數(shù)列{an}的通項(xiàng);
(II)記bn=2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北海一模)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且2
F1F2
+
F2Q
=
0
,則橢圓C的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北海一模)如圖,在120°二面角α-l-β內(nèi)半徑為1的圓O1與半徑為2的圓O2分別在半平面α、β內(nèi),且與棱l切于同一點(diǎn)P,則以圓O1與圓O2為截面的球的表面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北海一模)i為虛數(shù)單位,復(fù)平面內(nèi)表示復(fù)數(shù)z=
1+i
i
的點(diǎn)在( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案