【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且8sin2 .
(1)求角A的大;
(2)若a= ,b+c=3,求b和c的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) ,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直.
(1)求a的值;
(2)若對(duì)于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以3元/個(gè)的價(jià)格從面包店購(gòu)進(jìn)面包,然后以5元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以1元/個(gè)的價(jià)格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購(gòu)進(jìn)了90個(gè)面包,以x(單位:個(gè),60≤x≤110)表示面包的需求量,T(單位:元)表示利潤(rùn).
(Ⅰ)求T關(guān)于x的函數(shù)解析式;
(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)T不少于100元的概率;
(Ⅲ)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量x∈[60,70),則取x=65,且x=65的概率等于需求量落入[60,70)的頻率),求T的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果對(duì)一切實(shí)數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 恒成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞, ]
B.[3,+∞)
C.[﹣2 ,2 ]
D.[﹣3,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地要建造一個(gè)邊長(zhǎng)為2(單位:km)的正方形市民休閑公園OABC,將其中的區(qū)域ODC開挖成一個(gè)池塘,如圖建立平面直角坐標(biāo)系后,點(diǎn)D的坐標(biāo)為(1,2),曲線OD是函數(shù)y=ax2圖象的一部分,對(duì)邊OA上一點(diǎn)M在區(qū)域OABD內(nèi)作一次函數(shù)y=kx+b(k>0)的圖象,與線段DB交于點(diǎn)N(點(diǎn)N不與點(diǎn)D重合),且線段MN與曲線OD有且只有一個(gè)公共點(diǎn)P,四邊形MABN為綠化風(fēng)景區(qū):
(1)求證:b=﹣ ;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為t,①用t表示M、N兩點(diǎn)坐標(biāo);②將四邊形MABN的面積S表示成關(guān)于t的函數(shù)S=S(t),并求S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=cos(ωx+φ)(ω>0,﹣ <φ< )圖象上每一點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍(縱坐標(biāo)不變),再向右平移 個(gè)單位長(zhǎng)度得到y(tǒng)=cosx的圖象,則函數(shù)f(x)的單調(diào)遞增區(qū)間為( )
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ﹣ ,kπ﹣ ](k∈Z)
C.[4kπ﹣ ,kπ﹣ ](k∈Z)
D.[4kπ﹣ ,kπ+ ](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)=2g(x)+ ,若f( )+f(cos2θ)<f(π)﹣f( ),則θ的取值范圍是( )
A.(2kπ+ ,2kπ+ ),k∈Z
B.(2kπ﹣ ,2kπ)∪(2kπ,2kπ+π)∪(2kπ+π,2kπ+ π),k∈Z
C.(2kπ﹣ ,2kπ﹣ ),k∈Z
D.(2kπ﹣ ,2kπ﹣π)∪(2kπ﹣π,2kπ)∪(2kπ,2kπ+ ),k∈Z
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足(x﹣2)[f′(x)﹣f(x)]>0,且f(4﹣x)=e4﹣2xf(x),則下列關(guān)于 f(x)的命題正確的是( )
A.f(3)>e2f(1)
B.f(3)<ef(2)
C.f(4)<e4f(0)
D.f(4)<e5f(﹣1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com