【題目】到2020年,我國(guó)將全面建立起新的高考制度,新高考采用模式,其中語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣、愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門(mén)科目中自選3門(mén)(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學(xué)校采用分層抽樣的方法從高一年級(jí)1000名(其中男生550名,女生450名)學(xué)生中抽取了名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中有女生45名,求的值及抽取的男生的人數(shù).
(2)該校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目,且只能選擇一個(gè)科目),得到如下列聯(lián)表.
選擇“物理” | 選擇“地理” | 總計(jì) | |
男生 | 10 | ||
女生 | 25 | ||
總計(jì) |
(i)請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有以上的把握認(rèn)為選擇科目與性別有關(guān)系.
(ii)在抽取的選擇“地理”的學(xué)生中按性別分層抽樣抽取6名,再?gòu)倪@6名學(xué)生中抽取2名,求這2名中至少有1名男生的概率.
附:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
【答案】(1) ,55人 (2) (i)見(jiàn)解析;(ii)
【解析】
(1)根據(jù)題意可得求解即可得出的值,進(jìn)而可得抽取的男生人數(shù);
(2)
(i)根據(jù)題中數(shù)據(jù)先完善列聯(lián)表,再由題中公式,求出的值,結(jié)合臨界值表即可的結(jié)果;
(ii)先由題易知抽取的選擇“地理”的6名學(xué)生中,有2名男生,分別記為,,4名女生,分別記為,,,;用列舉法分別列舉出“6名學(xué)生中隨機(jī)抽取2名”和“其中至少有1名男生”所包含的基本事件,基本事件個(gè)數(shù)比即是所求概率.
解:(1)由題意得,解得,
則抽取的男生的人數(shù)為.
(2)(i)
選擇“物理” | 選擇“地理” | 總計(jì) | |
男生 | 45 | 10 | 55 |
女生 | 25 | 20 | 45 |
總計(jì) | 70 | 30 | 100 |
則,
所以有以上的把握認(rèn)為送擇科目與性別有關(guān)系.
(ii)由題易知抽取的選擇“地理”的6名學(xué)生中,有2名男生,分別記為,,4名女生,分別記為,,,.
從6名學(xué)生中隨機(jī)抽取2名,有,,,,,,,,,,,,,,共15種情況,其中至少有1名男生的有,,,,,,,,共9種情況,
故所求概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如下表:
AQI指數(shù)值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
下圖是某市10月1日—20日AQI指數(shù)變化趨勢(shì):
下列敘述錯(cuò)誤的是
A. 這20天中AQI指數(shù)值的中位數(shù)略高于100
B. 這20天中的中度污染及以上的天數(shù)占
C. 該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好
D. 總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)
(1)若,用“五點(diǎn)法”在給定的坐標(biāo)系中,畫(huà)出函數(shù)在上的圖象.
(2)若偶函數(shù),求:
(3)在(2)的前提下,將函數(shù)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍,縱坐標(biāo)不變,再向上平移一個(gè)單位得到函數(shù)的圖象,求的對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線經(jīng)過(guò)點(diǎn).曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)過(guò)點(diǎn)作直線的垂線交曲線于兩點(diǎn)(在軸上方),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)φ)﹣cos(ωx+φ)(),x=0和x是函數(shù)的y=f(x)圖象的兩條相鄰對(duì)稱軸.
(1)求f()的值;
(2)將y=f(x)的圖象向右平移個(gè)單位后,再將所得的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求y=g(x)的單調(diào)區(qū)間,并求其在[]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: (a﹥b﹥0)的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)不過(guò)原點(diǎn)O且斜率為的直線l與橢圓E交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列對(duì)任意滿足,下面給出關(guān)于數(shù)列的四個(gè)命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,,,分別是,,的中點(diǎn).
(1)求異面直線與所成角的余弦值;
(2)棱上是否存在點(diǎn),使得∥平面?請(qǐng)證明你的結(jié)論;
(3)求直線與平面所成角的余弦值;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com