10.橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點A關(guān)于原點的對稱點為B,F(xiàn)為其右焦點,若AF⊥BF,設(shè)∠ABF=α,且α∈[$\frac{π}{12}$,$\frac{π}{4}$],則該橢圓離心率的最大值為( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.1

分析 由橢圓的焦點在x軸上,設(shè)左焦點為F1,根據(jù)橢圓的定義:|AF|+|AF1|=2a,∠ABF=α,則:∠AF1F=α.則2a=2ccosα+2csinα,即a=(cosα+sinα)c,由橢圓的離心率e=$\frac{c}{a}$=$\frac{1}{sinα+cosα}$=$\frac{1}{\sqrt{2}sin(α+\frac{π}{4})}$,由α∈[$\frac{π}{12}$,$\frac{π}{4}$],根據(jù)正弦函數(shù)的圖象及性質(zhì),求得橢圓離心率的取值范圍,即可求得橢圓離心率的最大值.

解答 解:已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)焦點在x軸上,
橢圓上一點A關(guān)于原點的對稱點為點B,F(xiàn)為其右焦點,設(shè)左焦點為F1,
則:連接AF,AF1,AF,BF
所以:四邊形AFF1B為長方形.
根據(jù)橢圓的定義:|AF|+|AF1|=2a,
∠ABF=α,則:∠AF1F=α.
∴2a=2ccosα+2csinα,即a=(cosα+sinα)c,
由橢圓的離心率e=$\frac{c}{a}$=$\frac{1}{sinα+cosα}$=$\frac{1}{\sqrt{2}sin(α+\frac{π}{4})}$,
由α∈[$\frac{π}{12}$,$\frac{π}{4}$],
α+$\frac{π}{4}$∈[$\frac{π}{3}$,$\frac{π}{2}$],
sin(α+$\frac{π}{4}$)∈[$\frac{\sqrt{3}}{2}$,1],
$\sqrt{2}$sin(α+$\frac{π}{4}$)∈[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$],
$\frac{1}{\sqrt{2}sin(α+\frac{π}{4})}$∈[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$],
∴e∈[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$],
故橢圓離心率的最大值$\frac{\sqrt{6}}{3}$.
故選A.

點評 本題考查了橢圓的定義及其性質(zhì)、兩角差的正弦公式、正弦函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)y=f(x+2)的圖象關(guān)于直線x=-2對稱,且當(dāng)x∈(0,+∞)時,f(x)=|log2x|,若a=f(-3),b=f($\frac{1}{4}$),c=f(2),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}滿足:a1=1,且an+1=3an+3n-1(n∈N*
(1)若數(shù)列{${\frac{{{a_n}+λ}}{3^n}}\right.$}為等差數(shù)列,求λ的值
(2)設(shè)數(shù)列{${\frac{4n-2}{{3{a_n}-n-1}}}$}的前n項和為Sn,求證:Sn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如果A={x>-1},那么( 。
A.0⊆AB.{0}?AC.∅?AD.{0}⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|log2x<4},集合B={x||x|≤2},則A∩B=( 。
A.(0,2]B.[0,2]C.[-2,2]D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓元旦當(dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計部門隨機(jī)抽查了1月1日100名網(wǎng)購者的網(wǎng)購情況,得到如表數(shù)據(jù)統(tǒng)計表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.
網(wǎng)購金額(元)頻數(shù)頻率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合計1001.00
(1)先求出x,y,p,q的值,再將如圖所示的頻率分布直方圖繪制完整;
(2)對這100名網(wǎng)購者進(jìn)一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)此判斷能否在犯錯誤的概率不超過0.025的前提下認(rèn)為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?
x網(wǎng)齡3年以上網(wǎng)齡不足3年合計
購物金額在2000元以上35
購物金額在2000元以下20
總計100
參考數(shù)據(jù):
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對于函數(shù)f(x)與g(x),若區(qū)間[a,b]上|f(x)-g(x)|的最大值稱為f(x)與g(x)的“絕對差”,則f(x)=$\frac{1}{x+1}$,g(x)=$\frac{2}{9}$x2-x在[1,4]上的“絕對差”為(  )
A.$\frac{271}{72}$B.$\frac{23}{18}$C.$\frac{29}{45}$D.$\frac{13}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在實數(shù)集R上的函數(shù)f(x)滿足:f(x-1)+f(x+1)=0,且f(2-x)-f(2+x)=0現(xiàn)有以下四種說法:
①2是函數(shù)f(x)的一個周期;
②f(x)的圖象關(guān)于直線x=2對稱;
③f(x)是偶函數(shù);
④(-1,0)是函數(shù)f(x)的一個對稱中心.
其中正確說法的個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若命題p:?x0∈R,ax02+4x0+a≥-2x02+1是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案