已知是橢圓(a>b>0)的兩個焦點(diǎn),以線段為邊作正三角形M,若邊M的中點(diǎn)在橢圓上,則橢圓的離心率是

A.          B.           C.           D.

 

【答案】

B

【解析】

試題分析:根據(jù)題意,則可以結(jié)合正三角形的性質(zhì),中位線性質(zhì)和定義得到關(guān)系式,求解離心率。則由是橢圓(a>b>0)的兩個焦點(diǎn),以線段為邊作正三角形,若邊的中點(diǎn)N在橢圓上,則連接N,NAME 那么可知=c,=2a-c,則根據(jù)直角三角形的勾股定理可知,故答案選B.

考點(diǎn):橢圓的定義

點(diǎn)評:解決該試題的關(guān)鍵是對于定義的靈活運(yùn)用,以及正三角形中線是高線的性質(zhì)的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:=1(a>b>0)過點(diǎn)(1,),F1、F2分別為橢圓C的左、右兩個焦點(diǎn),且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點(diǎn),直線l過右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn),若AM、AN的斜率k1,k2滿足k1+k2=,求直線l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:IG∥F1F2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:=1(a>b>0)過點(diǎn)(1,),F1、F2分別為橢圓C的左、右兩個焦點(diǎn),且離心率e=.

(1)求橢圓C的方程;

(2)已知A為橢圓C的左頂點(diǎn),直線l過右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn).若AM,AN的斜率k1,k2滿足k1+k2=,求直線l的方程;

(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:GI∥F1F2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0103 月考題 題型:單選題

已知AB是橢圓 的長軸,若把線段AB五等份,過每個分點(diǎn)作AB的垂線,分別與橢圓的上半部分相交于C、D、E、G 四點(diǎn),設(shè)F是橢圓的左焦點(diǎn),則|FC|+|FD|+|FE|+|FG|的值是
[     ]
A.15
B.16
C.18
D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北黃岡聯(lián)考理)已知AB是橢圓=1的長軸,若把線段AB五等份,過每個分點(diǎn)作AB的垂線,分別與橢圓的上半部分相交于C、D、E、G四點(diǎn),設(shè)F是橢圓的左焦點(diǎn),則的值是(   )

A.15                   B.16                   C.18                   D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省上高二中09-10學(xué)年高二第五次月考(理) 題型:選擇題

 已知AB是橢圓=1的長軸,若把線段AB五等份,過每個分點(diǎn)作AB的垂線,分別與橢圓的上半部分相交于C、D、E、G四點(diǎn),設(shè)F是橢圓的左焦點(diǎn),則的值是()

A.15           B.16           C.18           D.20

 

查看答案和解析>>

同步練習(xí)冊答案