A. | 向右平移$\frac{π}{6}$個單位 | B. | 向右平移$\frac{π}{3}$個單位 | ||
C. | 向左平移$\frac{π}{6}$個單位 | D. | 向左平移$\frac{π}{3}$個單位 |
分析 由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式,再利用y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.
解答 解:根據(jù)f(x)=Asin(ωx+ϕ)(其中A>0,|φ|$<\frac{π}{2}$)的圖象,可得A=1,
$\frac{1}{4}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,∴ω=2.
再根據(jù)五點法作圖可得2•$\frac{π}{3}$+φ=π,∴φ=$\frac{π}{3}$,∴f(x)=sin(2x+$\frac{π}{3}$).
故把f(x)=sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{3}$個單位,可得y=sin[2(x-$\frac{π}{3}$)+$\frac{π}{3}$]=sin(2x-$\frac{π}{3}$)=g(x)的圖象,
故選:B.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出ω,由五點法作圖求出φ的值,y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,2,5) | B. | (-3,-2,5) | C. | (3,-2,-5) | D. | (-3,2,-5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 定義域是$\{x|x≠kπ+\frac{π}{6},(k∈Z)\}$ | B. | 值域是R | ||
C. | 在其定義域上是增函數(shù) | D. | 最小正周期是π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.1 | B. | 0.2 | C. | 0.4 | D. | 0.6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com