3.已知直線l過(guò)拋物線C的焦點(diǎn),且與C的對(duì)稱軸垂直,l與C交于A,B兩點(diǎn),|AB|=10,P為C的準(zhǔn)線上一點(diǎn),則△ABP的面積為25.

分析 根據(jù)拋物線的解析式y(tǒng)2=2px(p>0),寫(xiě)出拋物線的焦點(diǎn)、對(duì)稱軸以及準(zhǔn)線,然后根據(jù)通徑|AB|=2p,求出p,△ABP的面積是|AB|與DP乘積一半.

解答 解:由于拋物線的解析式為y2=2px(p>0),
則焦點(diǎn)為F($\frac{p}{2}$,0),對(duì)稱軸為x軸,準(zhǔn)線為x=-$\frac{p}{2}$,
∵直線l經(jīng)過(guò)拋物線的焦點(diǎn),A、B是l與C的交點(diǎn),
又∵AB⊥x軸
∴|AB|=2p=10
∴p=5
又∵點(diǎn)P在準(zhǔn)線上
∴DP=$\frac{p}{2}$+|-$\frac{p}{2}$|=p=5
∴S△ABP=$\frac{1}{2}$DP•AB=$\frac{1}{2}$×5×10=25
故答案為25.

點(diǎn)評(píng) 本題主要考查拋物線焦點(diǎn)、對(duì)稱軸、準(zhǔn)線以及焦點(diǎn)弦的特點(diǎn);關(guān)于直線和圓錐曲線的關(guān)系問(wèn)題一般采取數(shù)形結(jié)合法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在正方體ABCD-A1B1C1D1 中,
(1)畫(huà)出二面角A-B1C-C1 的平面角
(2)求證:面BB1DD1⊥面A1B1C1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)向量$\overrightarrow{a}$=(k,2),$\overrightarrow$=(1,-1),且$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)k的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)a>0為常數(shù),若對(duì)任意正實(shí)數(shù)x,y不等式(x+y)($\frac{1}{x}$+$\frac{a}{y}$)≥9恒成立,則a的最小值為(  )
A.4B.2C.81D.$\frac{81}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=4x2-kx-8在[5,20]上是單調(diào)遞減函數(shù),則實(shí)數(shù)k的取值范圍是(  )
A.(-∞,40]B.[160,+∞)C.[40,160]D.(-∞,40]∪[160,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在正三角形△ABC內(nèi)任取一點(diǎn)P,則點(diǎn)P到A,B,C的距離都大于該三角形邊長(zhǎng)一半的概率為( 。
A.1-$\frac{\sqrt{3}π}{6}$B.1-$\frac{\sqrt{3}π}{12}$C.1-$\frac{\sqrt{3}π}{9}$D.1-$\frac{\sqrt{3}π}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知命題p:函數(shù)y=x2+mx+1在(-1,+∞)上單調(diào)遞增,命題q:對(duì)函數(shù)y=-4x2+4(2-m)x-1,y≤0恒成立.若p∨q為真,p∧q為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某休閑廣場(chǎng)中央有一個(gè)半徑為1(百米)的圓形花壇,現(xiàn)計(jì)劃在該花壇內(nèi)建造一條六邊形觀光步道,圍出一個(gè)由兩個(gè)全等的等腰梯形(梯形ABCF和梯形DEFC)構(gòu)成的六邊形ABCDEF區(qū)域,其中A、B、C、D、E、F都在圓周上,CF為圓的直徑(如圖).設(shè)∠AOF=θ,其中O為圓心.
(1)把六邊形ABCDEF的面積表示成關(guān)于θ的函數(shù)f(θ);
(2)當(dāng)θ為何值時(shí),可使得六邊形區(qū)域面積達(dá)到最大?并求最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知方程$\frac{x^2}{k-3}+\frac{y^2}{2-k}=1$表示焦點(diǎn)在y軸上的雙曲線,則k的取值范圍為k<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案