如果e1e2是平面α內(nèi)所有向量的一組基底,那么,下列命題正確的是(    )

A.若實(shí)數(shù)λ1 、λ2使λ1e12e2=0,則λ12=0

B.空間任一向量a都可以表示為a1e12e2,其中λ1、λ2∈R

C.λ1e12e2不一定在平面α內(nèi),λ1、λ2∈R

D.對(duì)于平面α內(nèi)任一向量a,使a1e12e2的實(shí)數(shù)λ1、λ2有無數(shù)對(duì)

思路分析:要深刻理解平面向量基本定理.A正確;B錯(cuò),這樣的a只能與e1,e2在同一平面內(nèi),不能是空間任一向量.C錯(cuò),λ1e12e2在α內(nèi).D錯(cuò),這樣的λ12是唯一的,而不是無數(shù)對(duì),故選A.

答案:A

溫馨提示

應(yīng)用平面向量基本定理要注意以下幾點(diǎn):(1)e1,e2是同一平面內(nèi)的兩個(gè)不共線向量;

(2)基底的選取不唯一;

(3)該平面內(nèi)的任意向量a都可用e1,e2線性表示,而且這種表示是唯一的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果
e1
,
e2
是平面a內(nèi)所有向量的一組基底,那么( 。
A、若實(shí)數(shù)λ1,λ2使λ1
e1
+λ2
e2
=
0
,則λ12=0
B、空間任一向量可以表示為
a
=λ1
e1
+λ2
e2
,這里λ1,λ2∈R
C、對(duì)實(shí)數(shù)λ1,λ2,λ1
e1
+λ2
e2
不一定在平面a內(nèi)
D、對(duì)平面a中的任一向量
a
,使
a
=λ1
e1
+λ2
e2
的實(shí)數(shù)λ1,λ2有無數(shù)對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果e1、e2是平面α內(nèi)所有向量的一組基底,那么(    )

A.若實(shí)數(shù)λ1、λ2使λ1e12e2=0,則λ12=0

B.空間任一向量a可以表示為a1e12e2,這里λ1、λ2是實(shí)數(shù)

C.對(duì)實(shí)數(shù)λ1、λ2,λ1e12e2不一定在平面α內(nèi)

D.對(duì)平面α中的任一向量a,使a1e12e2的實(shí)數(shù)λ1、λ2有無數(shù)對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果e1、e2是平面α內(nèi)所有向量的一組基底,那么(    )

A.若實(shí)數(shù)λ1、λ2使λ1e12e2=0,則λ12=0

B.空間任一向量a可以表示為a1e12e2,這里λ1、λ2是實(shí)數(shù)

C.對(duì)實(shí)數(shù)λ1、λ2,λ1e12e2不一定在平面α內(nèi)

D.對(duì)平面α中的任一向量a,使a1e12e2的實(shí)數(shù)λ1、λ2有無數(shù)對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果e1、e2是平面內(nèi)所有向量的一組基底,那么(    )

A.若實(shí)數(shù)m、n使得me1+ne2=0,則m=n=0

B.空間任一向量a可以表示為a1e12e2,其中λ1、λ2為實(shí)數(shù)

C.對(duì)于實(shí)數(shù)m、n,me1+ne2不一定在此平面上

D.對(duì)于平面內(nèi)的某一向量a,存在兩對(duì)以上的實(shí)數(shù)m、n,使a=me1+ne2

查看答案和解析>>

同步練習(xí)冊(cè)答案