已知函數(shù)y=f(x)是奇函數(shù),當(dāng)x>0時,有f(x)=x+
4
x
-1;且當(dāng)x∈[-3,-1]時f(x)的值域是[n,m],則m-n的值是
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性的對稱性和單調(diào)性之間的關(guān)系,得到x∈[1,3]時f(x)的值域是[-m,-n],然后根據(jù)函數(shù)的表達式即可求解,m,n的值.
解答: 解:∵函數(shù)y=f(x)是奇函數(shù),且當(dāng)x∈[-3,-1]時f(x)的值域是[n,m],
∴根據(jù)奇函數(shù)的性質(zhì)可知當(dāng)x∈[1,3]時f(x)的值域是[-m,-n],
當(dāng)x>0時,有f(x)=x+
4
x
-1,則f(x)在[1,2]上單調(diào)遞減,在[2,3]上單調(diào)遞增,
∴函數(shù)的最小值為f(2)=2+2-1=3,即-m=3,
解得m=-3.
又f(1)=1+4-1=4,f(3)=3+
4
3
-1
=3
1
3
<f(1),
∴f(x)的最大值為f(1)=4,
即-n=4,解得n=-4,
∴m-n=-3-(-4)=1.
故答案為:1.
點評:本題主要考查函數(shù)奇偶性的應(yīng)用,以及函數(shù)y=x+
a
x
,a>0的單調(diào)性的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+y2=1(a>1)的長軸、短軸、焦距分別為A1A2、B1B2、F1F2,且|F1F2|2是|A1A2|2 與
|B1B2|2的等差中項
(Ⅰ)求橢圓C1的方程;
(Ⅱ)若曲線C2的方程為(x-t)2+y2=(t2+
3
t)2(0<t≤
2
2
),過橢圓C1左頂點的直線l與曲線C2相切,求直線l被橢圓C1截得的線段長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若函數(shù)f(x)=asinx+cosx的一個對稱中心是(
π
6
,0)
,則a的值等于-
3
;
②函數(shù)f(x)=cos(2x+
π
2
)在區(qū)間[0,
π
2
]上單調(diào)遞減;
③若函數(shù)f(x)=sin(2x+
π
3
)
的圖象向左平移a(a>0)個單位后得到的圖象與原圖象關(guān)于直線x=
π
2
對稱,則a的最小值是
π
6
;
④已知函數(shù)f(x)=sin(2x+ϕ) (-π<ϕ<π),若-|f(
π
6
)|≤f(x) 對任意x∈R恒成立,則:φ=
π
6
或-
6

其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷正誤:
(1)若三棱錐的六條邊都相等,則此三棱錐的三組對棱互相垂直;
 

(2)若三棱錐的三條側(cè)棱與底面所成的角相等,則此三棱錐是正三棱錐.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某飲料店的日銷售收入y(單位:百元)與當(dāng)天平均氣溫x(單位:℃)之間有下列數(shù)據(jù):
x -2 -1 0 1 2
y 5 4 2 2 1
甲、乙、丙三位同學(xué)對上述數(shù)據(jù)進行了研究,分別得到了x與y之間的三個線性回歸方程:
?
y
=-x+3
;②
?
y
=-x+2.8
;③
?
y
=-x+2.6
,④
?
y
=-x+2.4
,其中正確方程的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-m,2m-2]的奇函數(shù)f(x)的值域為[m,2m],則函數(shù)y=f(x+1)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面是一些命題的敘述語,其中命題和敘述方法都正確的是
 

(1)∵A∈α,B∈α,∴AB∈α.
(2)∵a∈α,α∈β,∴α∩β=a.
(3)∵A∈a,a?α,∴A∈α.
(4)∵A?a,a?α,∴A?α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(x,y)為不等式組
x2+y2≤1
x-y-1≤0
x+y+1≥0
表示的平面區(qū)域上一點,則x+2y取值范圍為( 。
A、[-
5
5
]
B、[-2,
5
]
C、[-1,2]
D、[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足不等式:
x-y+2≥0
1≤x≤2
y≥2

(1)求
y
x
的取值范圍;
(2)不等式xy≤ax2+2y2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案