已知直線過兩直線和的交點(diǎn),且直線與點(diǎn)和點(diǎn)的距離相等,求直線的方程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知兩條直線,點(diǎn).
直線過點(diǎn),且與直線垂直,求直線的方程;
若直線與直線平行,求的值;
點(diǎn)到直線距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)
已知直線L被兩平行直線:與:所截線段AB的中點(diǎn)恰在直線上,已知圓.
(Ⅰ)求兩平行直線與的距離;
(Ⅱ)證明直線L與圓C恒有兩個(gè)交點(diǎn);
(Ⅲ)求直線L被圓C截得的弦長最小時(shí)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
△ABC中,A(– 4,2).
(1)若∠ACB的平分線CD所在直線方程為,B(3,1),求點(diǎn)C的坐標(biāo);
(2)若兩條中線所在直線分別為,求直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線過P(3,-2)點(diǎn),求:
(1)原點(diǎn)到直線距離最大的的方程。
(2)原點(diǎn)到距離為3的的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)光線自點(diǎn)射到點(diǎn)后被軸反射,求該光線及反射光線所在的直線方程。(請用直線的一般方程表示解題結(jié)果)[來源:高&考
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若圓C的半徑為1,圓心在第一象限,且與直線4x-3y=0和x軸都相切,則該圓的標(biāo)準(zhǔn)方程是( )
A.(x-3)2+2=1 |
B.(x-2)2+(y-1)2=1 |
C.(x-1)2+(y-3)2=1 |
D.2+(y-1)2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知直線經(jīng)過直線與直線的交點(diǎn),且垂直于直線.(Ⅰ)求直線的方程;
(Ⅱ)求直線與兩坐標(biāo)軸圍成的三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com