【題目】已知函數(shù)上的偶函數(shù),對(duì)于任意都有成立,當(dāng),且時(shí),都有.給出以下三個(gè)命題:

①直線是函數(shù)圖像的一條對(duì)稱軸;

②函數(shù)在區(qū)間上為增函數(shù);

③函數(shù)在區(qū)間上有五個(gè)零點(diǎn).

問:以上命題中正確的個(gè)數(shù)有( ).

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

【答案】B

【解析】

根據(jù)題意,利用特殊值法分析可得,結(jié)合函數(shù)的奇偶性可得,

進(jìn)而可得,所以的周期為6;據(jù)此分析三個(gè)命題,綜合即可得答案.

解:根據(jù)題意,對(duì)于任意,都有成立,

,則,

上的偶函數(shù),所以,則有,所以的周期為6;

據(jù)此分析三個(gè)命題:

對(duì)于,函數(shù)為偶函數(shù),則函數(shù)的一條對(duì)稱軸為軸,又由函數(shù)的周期為6,

則直線是函數(shù)圖象的一條對(duì)稱軸,正確;

對(duì)于,當(dāng),,,且時(shí),都有,

則函數(shù)上為增函數(shù),

因?yàn)?/span>上的偶函數(shù),所以函數(shù),上為減函數(shù),

的周期為6,所以函數(shù)上為減函數(shù),錯(cuò)誤;

對(duì)于3,的周期為6,

所以,

函數(shù),上有四個(gè)零點(diǎn);錯(cuò)誤;

三個(gè)命題中只有是正確的;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,過橢圓的左焦點(diǎn)且傾斜角為的直線與圓相交所得弦長為.

1)求橢圓的方程;

2)是否存在過點(diǎn)的直線與橢圓交于兩點(diǎn),且,若存在,求直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,已知,,,,平面平面,的中點(diǎn),連接.

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中

(1)是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;

(2)若對(duì)任意的為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】光農(nóng)業(yè)科學(xué)研究所對(duì)冬季晝夜溫差大小與反季節(jié)土豆發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:

日期

11月1日

11月2日

11月3日

11月4日

11月5日

溫差(℃)

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

26

32

26

16

設(shè)農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

(2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)11月2日至11月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

其中: , ,

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)

(3)若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?

【答案】(1)答案見解析;(2) ;(3)中度高血壓人群.

【解析】試題分析:(1將數(shù)據(jù)對(duì)應(yīng)描點(diǎn),即得散點(diǎn)圖,2先求均值,再代人公式求,利用,(3根據(jù)回歸直線方程求自變量為180時(shí)對(duì)應(yīng)函數(shù)值,再求與標(biāo)準(zhǔn)值的倍數(shù),確定所屬人群.

試題解析:(1)

(2)

∴回歸直線方程為.

3)根據(jù)回歸直線方程的預(yù)測(cè),年齡為70歲的老人標(biāo)準(zhǔn)收縮壓約為mmHg

∴收縮壓為180mmHg的70歲老人為中度高血壓人群.

型】解答
結(jié)束】
19

【題目】如圖,四棱柱的底面為菱形, , 中點(diǎn).

(1)求證: 平面;

(2)若底面,且直線與平面所成線面角的正弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告費(fèi)用不超過9萬元,甲、乙電視臺(tái)的廣告費(fèi)標(biāo)準(zhǔn)分別是500/分鐘和200元分鐘,假設(shè)甲、乙兩個(gè)電視臺(tái)為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元分鐘,那么該公司合理分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,能使公司獲得最大的收益是()萬元

A.72B.80C.84D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量垂直于向量,向量垂直于向量.

1)求向量的夾角;

2)設(shè),且向量滿足,求的最小值;

3)在(2)的條件下,隨機(jī)選取一個(gè)向量,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為直平行六面體.命題為正方體;命題的任意體對(duì)角線與其不相交的面對(duì)角線垂直.則命題是命題的( )條件 .

A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要

查看答案和解析>>

同步練習(xí)冊(cè)答案