16.在等差數(shù)列{an}中,已知S15=90,則a8=6.

分析 利用等差數(shù)列的性質(zhì)可得:S15=$\frac{15({a}_{1}+{a}_{15})}{2}$=15a8,即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:S15=90=$\frac{15({a}_{1}+{a}_{15})}{2}$=15a8,
解得a8=6.
故答案為:6.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)、求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線(xiàn)x+(a2+1)y+1=0的傾斜角的取值范圍是( 。
A.[0,$\frac{π}{4}$]B.[0,$\frac{π}{2}$)∪[$\frac{3}{4}$π,π)C.($\frac{π}{2}$,π)D.[$\frac{3}{4}$π,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知集合A={x|y=$\sqrt{3-x}$},集合B={x|x≥1},則A∩B=( 。
A.[0,3]B.[1,3]C.[1,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若復(fù)數(shù)z滿(mǎn)足z-2=i(1+i)(i為虛數(shù)單位),則z=1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)=(x-1)(x-2)(x-3)(x-4)不求導(dǎo)數(shù),判斷f′(x)=0有幾個(gè)實(shí)根,并指出這些根所在的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知α是銳角,且cos(α+$\frac{π}{5}$)=$\frac{1}{3}$,則cos(2α+$\frac{π}{15}$)=( 。
A.$\frac{4\sqrt{6}-7}{18}$B.$\frac{7-4\sqrt{6}}{18}$C.$\frac{\sqrt{3}+\sqrt{2}}{6}$D.$\frac{\sqrt{3}-\sqrt{2}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.命題“-16≤a≤0”是命題“-6≤a≤0”的( 。
A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=|x-1|,g(x)=-|x+3|+a(a∈R).
(1)若a=6,解不等式f(x)>g(x);
(2)若函數(shù)y=2f(x)的圖象恒在函數(shù)y=g(x)的圖象上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,BC邊上的高所在的直線(xiàn)的方程為x-2y+1=0,∠A的平分線(xiàn)所在直線(xiàn)的方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2).
(1)求點(diǎn)A的坐標(biāo);
(2)求直線(xiàn)BC的方程;
(3)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案